Application Areas of Community Detection: a Review
dc.contributor.author | Karatas, A. | |
dc.contributor.author | Sahin, S. | |
dc.contributor.other | 03.04. Department of Computer Engineering | |
dc.contributor.other | 03. Faculty of Engineering | |
dc.contributor.other | 01. Izmir Institute of Technology | |
dc.date.accessioned | 2020-07-25T22:10:46Z | |
dc.date.available | 2020-07-25T22:10:46Z | |
dc.date.issued | 2019 | |
dc.description | Aselsan; BiSoft; et al.; Havelsan; Oracle; Proda | en_US |
dc.description.abstract | In the realm of today's real world, information systems are represented by complex networks. Complex networks contain a community structure inherently. Community is a set of members strongly connected within members and loosely connected with the rest of the network. Community detection is the task of revealing inherent community structure. Since the networks can be either static or dynamic, community detection can be done on both static and dynamic networks as well. In this study, we have talked about taxonomy of community detection methods with their shortages. Then we examine and categorize application areas of community detection in the realm of nature of complex networks (i.e., static or dynamic) by including sub areas of criminology such as fraud detection, criminal identification, criminal activity detection and bot detection. This paper provides a hot review and quick start for researchers and developers in community detection area. © 2018 IEEE. | en_US |
dc.description.sponsorship | TÜBİTAK; YOK, (100/2000) | en_US |
dc.identifier.doi | 10.1109/IBIGDELFT.2018.8625349 | |
dc.identifier.isbn | 9781728104720 | |
dc.identifier.scopus | 2-s2.0-85062695579 | |
dc.identifier.uri | https://doi.org/10.1109/IBIGDELFT.2018.8625349 | |
dc.identifier.wosqualityttp | Top10% | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, IBIGDELFT 2018 - Proceedings -- 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, IBIGDELFT 2018 -- 3 December 2018 through 4 December 2018 -- Ankara -- 144574 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Application Of Community Detection | en_US |
dc.subject | Community Detection | en_US |
dc.subject | Complex Networks | en_US |
dc.title | Application Areas of Community Detection: a Review | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
gdc.author.institutional | Karataş, Arzum | |
gdc.author.institutional | Şahin, Serap | |
gdc.author.institutional | Karataş, Arzum | |
gdc.author.scopusid | 57203943189 | |
gdc.author.scopusid | 56038839400 | |
gdc.coar.access | open access | |
gdc.coar.type | text::conference output | |
gdc.description.department | İzmir Institute of Technology | en_US |
gdc.description.departmenttemp | Karatas A., Department of Computer Engineering, Izmir Institute of Technology, Izmir, Turkey; Sahin S., Department of Computer Engineering, Izmir Institute of Technology, Izmir, Turkey | en_US |
gdc.description.endpage | 70 | en_US |
gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
gdc.description.scopusquality | N/A | |
gdc.description.startpage | 65 | en_US |
gdc.description.wosquality | N/A | |
gdc.identifier.openalex | W2911793480 | |
gdc.identifier.wos | WOS:000459239400013 | |
gdc.openalex.fwci | 0.504 | |
gdc.openalex.normalizedpercentile | 0.76 | |
gdc.opencitations.count | 36 | |
gdc.scopus.citedcount | 53 | |
gdc.wos.citedcount | 34 | |
relation.isAuthorOfPublication | 1ba7abd5-d1f8-41d8-924f-529afd5c84da | |
relation.isAuthorOfPublication | f3ff9456-f339-4a8f-9d65-5da2c5ac42a8 | |
relation.isAuthorOfPublication.latestForDiscovery | 1ba7abd5-d1f8-41d8-924f-529afd5c84da | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4014-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4004-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4003-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9af2b05f-28ac-4014-8abe-a4dfe192da5e |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Application_Areas.pdf
- Size:
- 202.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- Conference Object