Computer Engineering / Bilgisayar Mühendisliği
Permanent URI for this collectionhttps://hdl.handle.net/11147/10
Browse
Recent Submissions
Conference Object Applying Weighted Graph Embeddings To Turkish Metaphor Detection(Institute of Electrical and Electronics Engineers Inc., 2024) İnan, EmrahMetaphor is a common literary mechanism that allows abstract concepts to be conceptualised using more concrete terminology. Existing methods rely on either end-to-end models or hand-crafted pre-processing steps. Generating well-defined training datasets for supervised models is a time-consuming operation for this type of problem. There is also a lack of pre-processing steps for resource-poor natural languages. In this study, we propose an approach for detecting Turkish metaphorical concepts. Initially, we collect non-literal concepts including their meaning and reference sentences by employing a Turkish dictionary. Secondly, we generate a graph by discovering super-sense relations between sample texts including target metaphorical expressions in Turkish WordNet. We also compute weights for relations based on the path closeness and word occurrences. Finally, we classify the texts by leveraging a weighted graph embedding model. The evaluation setup indicates that the proposed approach reaches the best F1 and Gmean scores of 0.83 and 0.68 for the generated test sets when we use feature vector representations of the Node2Vec model as the input of the logistic regression for detecting metaphors in Turkish texts. © 2024 IEEE.Conference Object A News Chain Evaluation Methodology Along With a Lattice-Based Approach for News Chain Construction(Association for Computational Linguistics (ACL), 2017) Toprak, Mustafa; Özkahraman,Ö.; Tekir, SelmaChain construction is an important requirement for understanding news and establishing the context. A news chain can be defined as a coherent set of articles that explains an event or a story. There's a lack of well-established methods in this area. In this work, we propose a methodology to evaluate the "goodness" of a given news chain and implement a concept latticebased news chain construction method by Hossain et al. The methodology part is vital as it directly affects the growth of research in this area. Our proposed methodology consists of collected news chains from different studies and two "goodness" metrics, minedge and dispersion coefficient respectively. We assess the utility of the lattice-based news chain construction method by our proposed methodology. © EMNLP 2017.All right reserved.Conference Object Citation - Scopus: 9An Analysis of Large Language Models and Langchain in Mathematics Education(Association for Computing Machinery, 2023) Soygazi,F.; Oğuz, DamlaThe development of large language models (LLMs) has led to the consideration of new approaches, particularly in education. Word problems, especially in subjects like mathematics, and the need to solve these problems by collectively addressing specific stages of reasoning, have raised the question of whether LLMs can be successful in this area as well. In our study, we conducted analyses by asking mathematics questions especially related to word problems using ChatGPT, which is based on the latest language models like Generative Pretrained Transformer (GPT). Additionally, we compared the correct and incorrect answers by posing the same questions to LLMMathChain, a mathematics-specific LLM based on the latest language models like LangChain. It was observed that the answers obtained were more successful with ChatGPT (GPT 3.5), particularly in the field of mathematics. However, both language models were found to be below expectations, particularly in word problems, and suggestions for improvement were provided. © 2023 ACM.Article Citation - Scopus: 3Development of Chrono-Spectral Gold Nanoparticle Growth Based Plasmonic Biosensor Platform(Elsevier, 2024) Sözmen, Alper Baran; Elveren, Beste; Erdoğan, Duygu; Mezgil, Bahadır; Baştanlar, Yalın; Yıldız, Ümit Hakan; Arslan Yıldız, AhuPlasmonic sensor platforms are designed for rapid, label-free, and real-time detection and they excel as the next generation biosensors. However, current methods such as Surface Plasmon Resonance require expertise and well-equipped laboratory facilities. Simpler methods such as Localized Surface Plasmon Resonance (LSPR) overcome those limitations, though they lack sensitivity. Hence, sensitivity enhancement plays a crucial role in the future of plasmonic sensor platforms. Herein, a refractive index (RI) sensitivity enhancement methodology is reported utilizing growth of gold nanoparticles (GNPs) on solid support and it is backed up with artificial neural network (ANN) analysis. Sensor platform fabrication was initiated with GNP immobilization onto solid support; immobilized GNPs were then used as seeds for chrono-spectral growth, which was carried out using NH2OH at varied incubation times. The response to RI change of the platform was investigated with varied concentrations of sucrose and ethanol. The detection of bacteria E.coli BL21 was carried out for validation as a model microorganism and results showed that detection was possible at 102 CFU/ml. The data acquired by spectrophotometric measurements were analyzed by ANN and bacteria classification with percentage error rates near 0% was achieved. The proposed LSPR-based, label-free sensor application proved that the developed methodology promises utile sensitivity enhancement potential for similar sensor platforms. © 2024 The Author(s)Conference Object Size Measurement and Effort Estimation in Microservicebased Projects: Results From Pakistan(CEUR-WS, 2023) Soylu, Görkem Kılınç; Ünlü, Hüseyin; Ahmad, Isra Shafique; Demirörs, OnurDuring the last decade, microservice-based software architecture has been a common design paradigm in the industry and has been successfully utilized by organizations. Microservice-based software architecture, specifically in the form of reactive systems, has substantial differences from the more conventional design paradigms, such as the object-oriented paradigm. The architecture moved away from being data-driven and evolved into a behavior-oriented structure. The usage of a single database is replaced by the structures in which each microservice is developed independently and has its own database. Therefore, adaptation demands software organizations to transform their culture. In this study, we aimed to get an insight into how Pakistani software organizations perform size measurement and effort estimation in their software projects which embrace the microservice-based software architecture paradigm. For this purpose, we surveyed 49 Pakistani participants from different agile organizations over different roles and domains to collect information on their experience in microservice-based projects. Our results reveal that although Pakistani organizations face challenges, they continue using familiar subjective size measurement and effort estimation approaches that they have used for traditional architectures. © 2023 Copyright for this paper by its authors.Conference Object Citation - Scopus: 1Computing a Parametric Reveals Relation for Bounded Equal-Conflict Petri Nets(Springer, 2024) Adobbati, Federica; Bernardinello, Luca; Kılınç Soylu, Görkem; Pomello, LuciaIn a distributed system, in which an action can be either “hidden” or “observable”, an unwanted information flow might arise when occurrences of observable actions give information about occurrences of hidden actions. A collection of relations, i.e. reveals and its variants, is used to model such information flow among transitions of a Petri net. This paper recalls the reveals relations defined in [3], and proposes an algorithm to compute them on bounded equal-conflict PT systems, using a smaller structure than the one defined in [3]. © 2024, The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature.Article Citation - Scopus: 2Automatic Test Sequence Generation and Functional Coverage Measurement From Uml Sequence Diagrams(Igi Global, 2023) Ekici, Nazim Umut; Tuglular, TugkanSequence diagrams define functional requirements through use cases. However, their visual form limits their usability in the later stages of the development life cycle. This work proposes a method to transform sequence diagrams into graph-based event sequence graphs, allowing the application of graph analysis methods and defining graph-based coverage criteria. This work explores these newfound abilities in two directions. The first is to use coverage criteria along with existing tests to measure their coverage levels, providing a metric of how well they address the scenarios defined in sequence diagrams. The second is to use coverage criteria to automatically generate effective and efficient acceptance test cases based on the scenarios defined in sequence diagrams. The transformation method is validated with over eighty non-trivial projects. The complete method is validated through a non-trivial example. The results show that the test cases generated with the proposed method are more effective at exposing faults and more efficient in test input size than user-generated test cases.Article Endüstriyel Nesnelerin İnterneti Uygulamaları için Fpga Destekli ve Bağlam Tabanlı Erişim Kontrol Güvenlik Sistemi(2023) Ercan, Ahmet Tuncay; Genç, Didem; Tomur, EmrahEndüstri 4.0 ile birlikte üretimin her alanında gittikçe artan bilgisayar destekli sistemlerin yarattığı farklı ve karmaşık ağ topolojileri, artan veri miktarı, firmaların güvenlik ihtiyaçlarını artırmaktadır. Bundan dolayı farklı endüstriyel sektörlerde kullanılan farklı cihaz ve veri kullanımı şirketler, kendi kritik akıllı üretim sistemlerine yönelik güvenilir bir risk yönetim sistemine ihtiyaç duymaktadır. İşletmeler bu yüzden sahip oldukları Endüstriyel Kontrol ve Bilişim Sistemlerini korumayı amaçlarlar. Bu çalışmada üretim alanında kullanılabilecek, endüstriyel cihazlar ve/veya bunlara bağlı sensörlerin erişim kontrolü bağlamında güvenlik ihtiyaçlarını karşılayacak ve kenar bilişim kapsamında çalışacak FPGA (Alanda Programlanabilir Kapı Dizileri) destekli bir güvenlik platformu tasarlanmış ve çalışma yöntemi açıklanmıştır. Akıllı üretim cihazlarının bulunduğu bir imalathane ortamında çalışan cihaz, sensor, akıllı kontrol kutusu ve ağ geçidi gibi bileşenler üzerinde bağlam-tabanlı bir erişim denetim sistemi kullanımı gösterilmiş ve örnek bir çoklu kimlik doğrulama yöntemi tasarlanmıştır.Article Citation - Scopus: 1Unifying Behavioral and Feature Modeling for Testing of Software Product Lines(World Scientific Publishing, 2023) Belli, Fevzi; Tuğlular, Tuğkan; Ufuktepe, EkincanExisting software product line (SPL) engineering testing approaches generally provide positive testing that validates the SPL's functionality. Negative testing is commonly neglected. This research aims to unify behavioral and feature models of an SPL, enable testing before and after variability binding for domain-centric and product-centric testing, and combine positive and negative testing for a holistic testing view. This study suggests behavioral modeling with event sequence graphs (ESGs). This heterogeneous modeling strategy supports bottom-up domain testing and top-down product testing with the feature model. This new feature-oriented ESG test creation method generates shorter test sequences than the original ESG optimum test sequences. Statechart and original ESG test-generating methods are compared. Positive testing findings are similar. The Statechart technique generated 12 test cases with 59 events, whereas the ESG technique created six test cases with 60 events. The ESG technique generated 205 negative test cases with 858 events with the Test Suite Designer tool. However, the Conformiq Designer tool for the Statechart technique does not have a negative test case generation capability. It is shown that the proposed ESG-based holistic approach confirms not only the desirable (positive) properties but also the undesirable (negative) ones. As an additional research, the traditional ESG test-generating approach is compared to the new feature-oriented method on six SPLs of different sizes and features. Our case study results show that the traditional ESG test generation approach demonstrated higher positive test generation scores compare to the proposed feature-oriented test generation approach. However, our proposed feature-oriented test generation approach is capable of generating shorter test sequences, which could be beneficial for reducing the execution time of test cases compared to traditional ESG approach. Finally, our case study has also shown that regardless of the test generation approach, there has been found no significant difference between the Bottom-up and Top-down test strategies with respect to their positive test generation scores. © World Scientific Publishing Company.Conference Object Monocular Vision-Based Prediction of Cut-In Manoeuvres With Lstm Networks(Springer, 2023) Nalçakan, Yağız; Baştanlar, YalınAdvanced driver assistance and automated driving systems should be capable of predicting and avoiding dangerous situations. In this paper, we first discuss the importance of predicting dangerous lane changes and provide its description as a machine learning problem. After summarizing the previous work, we propose a method to predict potentially dangerous lane changes (cut-ins) of the vehicles in front. We follow a computer vision-based approach that only employs a single in-vehicle RGB camera, and we classify the target vehicle’s maneuver based on the recent video frames. Our algorithm consists of a CNN-based vehicle detection and tracking step and an LSTM-based maneuver classification step. It is computationally efficient compared to other vision-based methods since it exploits a small number of features for the classification step rather than feeding CNNs with RGB frames. We evaluated our approach on a publicly available driving dataset and a lane change detection dataset. We obtained 0.9585 accuracy with the side-aware two-class (cut-in vs. lane-pass) classification model. Experiment results also reveal that our approach outperforms state-of-the-art approaches when used for lane change detection. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.Article Link Prediction for Completing Graphical Software Models Using Neural Networks(IEEE, 2023) Leblebici, Onur; Tuğlular, Tuğkan; Belli, FevziDeficiencies and inconsistencies introduced during the modeling of software systems may result in high costs and negatively impact the quality of all developments performed using these models. Therefore, developing more accurate models will aid software architects in developing software systems that match and exceed expectations. This paper proposes a graph neural network (GNN) method for predicting missing connections, or links, in graphical models, which are widely employed in modeling software systems. The proposed method utilizes graphs as allegedly incomplete, primitive graphical models of the system under consideration (SUC) as input and proposes links between its elements through the following steps: (i) transform the models into graph-structured data and extract features from the nodes, (ii) train the GNN model, and (iii) evaluate the performance of the trained model. Two GNN models based on SEAL and DeepLinker are evaluated using three performance metrics, namely cross-entropy loss, area under curve, and accuracy. Event sequence graphs (ESGs) are used as an example of applying the approach to an event-based behavioral modeling technique. Examining the results of experiments conducted on various datasets and variations of GNN reveals that missing connections between events in an ESG can be predicted even with relatively small datasets generated from ESG models. AuthorArticle Citation - WoS: 6Citation - Scopus: 11Microservice-Based Projects in Agile World: a Structured Interview(Elsevier, 2024) Unlu, Huseyin; Kennouche, Dhia Eddine; Soylu, Gorkem Kiling; Demirors, OnurContext: During the last decade, Microservice-based software architecture (MSSA) has been a preferred design paradigm for a growing number of companies. MSSA, specifically in the form of reactive systems, has substantial differences from the more conventional design paradigms, such as object-oriented analysis and design. Therefore, adaptation demands software organizations to transform their culture. However, there is a lack of research studies that explore common practices utilized by software companies that implement MSSAs.Objective: In this study, our goal is to get an insight into how practices such as an agile methodology, software analysis, design, test, size measurement, and effort estimation are performed in software projects which embrace the Microservice-based software architecture paradigm. Together with the identification of practices utilized for the MSSA paradigm, we aim to determine the challenges organizations face to adopt microservice-based software architectures.Method: We performed a structured interview with participants coming from 20 different organizations over different roles, domains, and countries to collect information on their views, experience, and the challenges faced.Results: Our results reveal that organizations find agile development compatible with microservices. In general, they continue to use traditional object-oriented modeling notations for analysis and design in an abstract way. They continue to use the same subjective size measurement and effort estimation approaches that they were using previously in traditional architectures. However, they face unique challenges in developing microservices.Conclusion: Although organizations face challenges, practitioners continue to use familiar techniques that they have been using for traditional architectures. The results provide a snapshot of the software industry that utilizes microservices.Article Citation - WoS: 1Citation - Scopus: 1How Software Practitioners Perceive Work-Related Barriers and Benefits Based on Their Educational Backgrounds: Insights From a Survey Study(IEEE, 2023) Ünlü, Hüseyin; Yürüm, Ozan Raşit; Özcan Top, Özden; Demirörs, OnurSurvey results show that software practitioners from nonsoftware-related backgrounds face more barriers, have fewer benefits, and feel less satisfied in their work life. However, these differences reduce with more than 10 years of experience and involvement in software-related graduate programs, certificates, and mentorship.Conference Object Kurt saldırıları için sentetik irislerde örnek seçilimi(IEEE, 2023) Akdeniz, Eyüp Kaan; Erdoğmuş, NesliIn this study, samples with higher potential to succeed in wolf attacks are picked among synthetically generated iris images, and the composed subset is shown to pose a more significant threat toward an iris recognition system backed by a Presentation Attack Detection (PAD) module with respect to randomly selected samples. Iris images generated by Deep Convolutional Generative Adversarial Networks (DCGAN) are firstly filtered by rejection sampling on PAD score distribution of real iris image PAD scores. Next, the probability of zero success in all attack attempts is calculated for each synthetic iris image, using real iris images in the training set, and match and non-match score distributions are calculated on those. Synthetic images with the lowest probabilities of zero success are included in the final set. Our hypothesis that this set would be more successful in wolf attacks is tested by comparing its spoofing performances with randomly selected sample sets.Article Spectral Test Generation for Boolean Expressions(World Scientific Publishing, 2023) Ayav, TolgaThis paper presents a novel method for testing Boolean expressions. It is based on spectral, aka Fourier analysis of Boolean functions which is exploited to generate test inputs. The approach has three important contributions: (i) It generates a relatively small test suite with a high capability of fault detection, (ii) The test suite is prioritized such that expected fault detection time is shorter, (iii) It is entirely mathematical relying on a simple and straightforward formula. The proposed method is formulated and evaluations are performed on both synthetic and real expressions. It is also compared with two common test generation criteria, MC/DC and Minimal MUMCUT. Evaluations show that the test suite generated by the spectral approach is relatively small while expressing the capability of a better and quicker fault detection. The approach presented in this paper provides a useful insight into how spectral/Fourier analysis of Boolean functions can be exploited in software testing.Research Project FTGPGPU - Genel amaçlı grafik işlemci birimi uygulamaları için donanım hatası toleransı analizi(2022) Öz, IşılGenel amaçlı hesaplamalar için grafik islemci birimlerinin (GPGPU) kullanımı, donanım hatalarının kritikligini arttırmakta, programların geçici hata hassasiyetini degerlendirmek ve uygun hata toleransı tekniklerini kullanmak daha önemli hale gelmektedir. Hataya en hassas program bölgelerinin korunması yoluyla, hem performansı, hem de güvenilirligi hedefleyen sistemler için ayrıntılı bölgesel hata hassasiyeti analizi çok önemlidir. Bu projede, GPGPU uygulamalarının geçici donanım hatası hassasiyetinin ölçülmesi, analiz edilmesi ve bu analizlerin sonuçlarının program özellikleri ile iliskilendirilmesi, seçimli hata toleransı yöntemi gelistirilmesi yoluyla kullanılması amaçlanmıstır. Projenin ilk katkısı, GPGPU uygulamlarının geçici hata hassasiyetlerinin bölgesel olarak belirlenmesi için yazılım ile donanım iliskisini saglayacak sekilde assembly seviyesinde hata ayıklayıcı tabanlı bir hata enjeksiyonu ve hata yayılımı analizi aracı gelistirilmesidir. Bu araç kullanılarak farklı yapıdaki, farklı özelliklere sahip GPGPU programlarının belirlenen kod bölgelerine hata enjeksiyonu saglayan deneyler yapılmıs, kod bölgelerinin hata hassasiyetleri ve olusan hatanın program süresince farklı veri yapılarına yayılımı incelenmistir. Projenin ikinci katkısı, GPGPU program kod parçalarının özellikleri ile bu kodlar çalısırken meydana gelebilecek hatalara hassasiyetleri arasındaki iliskinin incelenmesidir. GPGPU programlarındaki kod parçacıklarının performans ve mimari özellikleri profilleme ve simulasyon yöntemleriyle elde edilmis, ilk adımda gelistirilen hata enjeksiyonu aracıyla belirlenen kod parçalarına hata enjekte ederek uygulanan deney sonuçlarında sessiz veri bozunumu, çökme ve dogru çalısma durumları belirlenmistir. Program özellikleri-hata hassasiyeti ikilisi arasındaki iliski incelenerek program özellikleri verilen bir GPGPU uygulamasının hata hassasiyet degerleri makine ögrenmesi yöntemleriyle tahmin edilmistir. Gelistirilen tahminleme modelleriyle sessiz veri bozunumu için %82, çökme durumları için %87, dogru çalısma durumları için %96 dogruluk oranlarıyla tahminleme basarısı saglanmıstır. Projenin üçüncü katkısı, hataya daha hassas kod bölgelerinin çoklanmasına dayalı seçimli hata toleransı yöntemi gelistirilmesidir. Program gelistirici veya kullanıcı tarafından kaynak kodda isaretlenen kod bölgelerinin çoklanması seklinde gerçeklenen derleyici seviyesinde gelistirilen hata toleransı yapısı, belirtilen kernel fonksiyonlarının çoklanmasını artıklı kernel fonksiyonu olarak veya tek kernel fonksiyonu altında artıklı is parçacıgı olarak veya CUDA stream teknigi ile mümkün kılmaktadır. Böylece uygulamanın paralellik ve veri kullanımı özelliklerine göre farklı çoklama yürütme durumları seçilebilmekte, kaba taneli (coarsegrained) bir yapıda çıktı kontrolü ile performanslı bir sekilde çoklama saglanmaktadır.Article Yazılım Ürün Hatlarında Tam Üründen Özellik Eksiltme Yoluyla Frklı Ürün Yapılandırmalarını Otomatik Üretme Yöntemi(2023) Öztürk Kaya, Dilek; Tuğlular, TuğkanYazılım ürün hattı (YÜH) karmaşık, büyük ölçekli ve ürün yapılandırması bakımından zengin yazılım sistemleri geliştirmek için gelelecek vadeden bir yaklaşımdır. Yazılım ürün hattındaki sayısı çok fazla olabilen ürün yapılandırmalarına ait modellerin otomatik elde edilmesi zaman ve maliyet kısıtları açısından oldukça önemlidir. Bu çalışmada, ürün modellerini daha üretken ve etkili şekilde elde edebilmek için, tam ürün modelinden, özellik eksiltme yoluyla farklı ürün yapılandırmalarına ait modelleri otomatik olarak elde etmeyi sağlayan bir yaklaşım önerdik. Önerilen yaklaşımı İçecek Otomatı YÜH, Banka Hesabı YÜH ve Öğrenci Yoklama Sistemi YÜH isimli üç farklı vaka çalışması üzerinde denedik. Özellik-bağımlılık ağacı ve dinamik kenar eşleme algoritması bu çalışmada önerilen özgün kavramlardır.Book Part Citation - Scopus: 2Dementia Detection With Deep Networks Using Multi-Modal Image Data(CRC Press, 2023) Yiğit, Altuğ; Işık, Zerrin; Baştanlar, YalınNeurodegenerative diseases give rise to irreversible neural damage in the brain. By the time it is diagnosed, the disease may have progressed. Although there is no complete treatment for many types of neurodegenerative diseases, by detecting the disease in its early stages, treatments can be applied to relieve some symptoms or prevent disease progression. Many invasive and non-invasive methods are employed for the diagnosis of dementia. Computer-assisted diagnostic systems make the diagnosis based on volumetric features (structural or functional) or some two-dimensional brain perspectives obtained from a single image modality. This chapter firstly introduces a broad review of multi-modal imaging approaches proposed for dementia diagnosis. Then it presents deep neural networks, which extract structural and functional features from multi-modal imaging data, are employed to diagnose Alzheimer’s and mild cognitive impairments. While MRI scans are safer than most types of scans and provide structural information about the human body, PET scans provide information about functional activities in the brain. Thus, the setup has been designed to make experiments using both MRI and FDG-PET scans. Performances of multi-modal models were compared with single-modal solutions. The multi-modal solution showed superiority over single-modals due to the advantage of focusing on assorted features. © 2023 selection and editorial matter, Jyotismita Chaki; individual chapters, the contributors.Conference Object Citation - Scopus: 1A Lightweight and Energy Efficient Secrecy Outage Probability-Based Friendly Jamming(IEEE, 2023) Yaman, Okan; Ayav, Tolga; Erten, Yusuf MuratThird parties and legitimate entities can reach and process users' private data through most wireless networks. However, attackers such as intruders and eavesdroppers may also try to exploit this property in communication. Hence, wireless networks are intrinsically more vulnerable to threats, unlike their wired alternatives. Cryptographic techniques are the conventional approaches to deal with that weakness. Nevertheless, they still need to meet the requirements of contemporary technologies, including IoT nodes with energy and processing power constraints. In that respect, friendly jamming (FJ) is one of the encouraging countermeasures to overcome the mentioned susceptibility since it has an energy-efficient and computation-friendly nature. However, that promising approach brings another challenge, applicability. Although various models exist against this issue, a lightweight scheme compliant with novel technologies is needed. Hence, we propose a more straightforward FJ model evaluated on cellular network-based simulations in this study. Moreover, introducing a lightweight secrecy outage probability definition increases robustness and energy efficiency. © 2023 IEEE.Article Citation - WoS: 2Citation - Scopus: 3Application of the Law of Minimum and Dissimilarity Analysis To Regression Test Case Prioritization(IEEE, 2023) Ufuktepe, Ekincan; Tuğlular, TuğkanRegression testing is one of the most expensive processes in testing. Prioritizing test cases in regression testing is critical for the goal of detecting the faults sooner within a large set of test cases. We propose a test case prioritization (TCP) technique for regression testing called LoM-Score inspired by the Law of Minimum (LoM) from biology. This technique calculates the impact probabilities of methods calculated by change impact analysis with forward slicing and orders test cases according to LoM. However, this ordering doesn't consider the possibility that consecutive test cases may be covering the same methods repeatedly. Thereby, such ordering can delay the time of revealing faults that exist in other methods. To solve this problem, we enhance the LoM-Score TCP technique with an adaptive approach, namely with a dissimilarity-based coordinate analysis approach. The dissimilarity-based coordinate analysis uses Jaccard Similarity for calculating the similarity coefficients between test cases in terms of covered methods and the enhanced technique called Dissimilarity-LoM-Score (Dis-LoM-Score) applies a penalty with respective on the ordered test cases. We performed our case study on 10 open-source Java projects from Defects4J, which is a dataset of real bugs and an infrastructure for controlled experiments provided for software engineering researchers. Then, we hand-seeded multiple mutants generated by Major, which is a mutation testing tool. Then we compared our TCP techniques LoM-Score and Dis-LoM-Score with the four traditional TCP techniques based on their Average Percentage of Faults Detected (APFD) results.
