FW-S3KIFCM: Feature Weighted Safe-Semi Kernel-Based Intuitionistic Fuzzy C-Means Clustering Method

dc.contributor.author Khezri, Shirin
dc.contributor.author Aghazadeh, Nasser
dc.contributor.author Hashemzadeh, Mahdi
dc.contributor.author Oskouei, Amin Golzari
dc.date.accessioned 2025-08-27T16:39:32Z
dc.date.available 2025-08-27T16:39:32Z
dc.date.issued 2025
dc.description.abstract Semi-supervised clustering (SSC) methods have emerged as a notable research area in machine learning. These methods integrate prior knowledge of class distribution into their clustering process. Despite their efficiency and straightforwardness, SSCs encounter some fundamental issues. Generally, the proportion of unlabeled data surpasses that of labeled data. Consequently, handling the uncertainty of unlabeled data becomes difficult. This issue is frequently related to numerous real-world problems. On the other hand, existing SSC techniques fail to differentiate between the varied attributes within the feature space. When forming clusters, they presume uniform significance for all attributes, disregarding potential variations in feature importance. This presumption hinders the creation of optimal clusters. Furthermore, all existing approaches employ the Euclidean distance metric, susceptible to noise and outliers. This paper proposes a robust safe-semi-supervised clustering algorithm to mitigate these shortcomings. For the first time, this approach combines two concepts of Intuitionistic Fuzzy C-Means (IFCM) clustering and Safe-Semi-Supervised Fuzzy C-Means (S3FCM) clustering to address the uncertainty problem in unlabeled data. Also, it uses a kernel function as a distance metric to tackle noise and outliers. Additionally, incorporating a feature weighting parameter in the objective function highlights the importance of significant features in creating optimal clusters. The effectiveness of the proposed method is thoroughly evaluated on various benchmark datasets, and its performance is compared with state-of-the-art methods. The results show the superiority of the proposed method over its competitors. en_US
dc.identifier.doi 10.26599/FIE.2025.9270061
dc.identifier.issn 1616-8658
dc.identifier.issn 1616-8666
dc.identifier.scopus 2-s2.0-105011975265
dc.identifier.uri https://doi.org/10.26599/FIE.2025.9270061
dc.identifier.uri https://hdl.handle.net/11147/18359
dc.language.iso en en_US
dc.publisher Tsinghua Univ Press en_US
dc.relation.ispartof Fuzzy Information and Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Measurement en_US
dc.subject Hands en_US
dc.subject Uncertainty en_US
dc.subject Clustering Methods en_US
dc.subject Noise en_US
dc.subject Clustering Algorithms en_US
dc.subject Machine Learning en_US
dc.subject Euclidean Distance en_US
dc.subject Linear Programming en_US
dc.subject Kernel en_US
dc.subject Fuzzy C-Means en_US
dc.subject Intuitionistic Fuzzy C-Means en_US
dc.subject Safe-Semi-Supervised Clustering en_US
dc.subject Feature Weighting en_US
dc.title FW-S3KIFCM: Feature Weighted Safe-Semi Kernel-Based Intuitionistic Fuzzy C-Means Clustering Method en_US
dc.type Article en_US
gdc.author.scopusid 12242792700
gdc.author.scopusid 8937839000
gdc.author.scopusid 55579430200
gdc.author.scopusid 57207307861
gdc.author.wosid Khezri, Shirin/Glu-2229-2022
gdc.author.wosid Golzari Oskouei, Amin/S-4622-2019
gdc.description.department İzmir Institute of Technology en_US
gdc.description.departmenttemp [Khezri, Shirin] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz 5375171379, Iran; [Aghazadeh, Nasser] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkiye; [Aghazadeh, Nasser] Khazar Univ, Ctr Theoret Phys, Baku AZ-1096, Azerbaijan; [Hashemzadeh, Mahdi] Azarbaijan Shahid Madani Univ, Fac Informat Technol & Comp Engn, Tabriz 5375171379, Iran; [Oskouei, Amin Golzari] Urmia Univ Technol, Fac IT & Comp Engn, Orumiyeh 1716557166, Iran; [Oskouei, Amin Golzari] Istinye Univ, Fac Engn & Nat Sci, Dept Software Engn, TR-34396 Istanbul, Turkiye en_US
gdc.description.endpage 260 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 227 en_US
gdc.description.volume 17 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality N/A
gdc.identifier.wos WOS:001536452100006

Files