Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9943
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakuş, Oktay-
dc.contributor.authorKuruoğlu, Ercan E.-
dc.contributor.authorAltınkaya, Mustafa Aziz-
dc.date.accessioned2021-01-24T18:31:44Z-
dc.date.available2021-01-24T18:31:44Z-
dc.date.issued2015-
dc.identifier.isbn978-1-4673-7386-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/11147/9943-
dc.description23nd Signal Processing and Communications Applications Conference (SIU)en_US
dc.description.abstractWind energy is one of the preferred energy generation methods because wind is an important renewable energy source. Prediction of wind speed in a time period, is important due to the one-to-one relationship between wind speed and wind power. Due to the nonlinear character of the wind speed data, nonlinear methods are known to produce better results compared to linear time series methods like Autoregressive (AR), Autoregressive Moving Average (ARMA) in predicting in a period longer than 12 hours. A method is proposed to apply a 48-hour ahead wind speed prediction by using the past wind speed measurements of the (Cesme Peninsula. We proposed to model wind speed data with a Polynomial AR (PAR) model. Coefficients of the models are estimated via linear Least Squares (LS) method and up to 48 hours ahead wind speed prediction is calculated for different models. In conclusion, a better performance is observed for higher than 12-hour ahead wind speed predictions of wind speed data which is modelled with PAR model, than AR and ARMA models.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedingsen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectARen_US
dc.subjectARMAen_US
dc.subjectPARen_US
dc.subjectnonlinear time seriesen_US
dc.subjectlong term wind speed predictionen_US
dc.titleLong term wind speed prediction with polynomial autoregressive modelen_US
dc.typeConference Objecten_US
dc.institutionauthorKarakuş, Oktay-
dc.institutionauthorAltınkaya, Mustafa Aziz-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.startpage645en_US
dc.identifier.endpage648en_US
dc.identifier.wosWOS:000380500900140en_US
dc.identifier.scopus2-s2.0-84939176413en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

200
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.