Klasik Parametrik Olmayan Spektrum Kestirim Tekniklerini Gürbüzleştirmek için Bir Yöntem

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Bu çalışmada, Gauss dağılımına sahip olmayan ortamlar için gürbüz parametrik olmayan spektrum kestirim yöntemleri önerilmektedir. Bu amaca yönelik olarak, örnek uzamsal işaret ortak değişinti matrisinden (spatial sign covariance matrix) elde edilen özilinti fonksiyonu kestiricisi (autocorrelation function estimator), periyodogram ve Blackman-Tukey gibi klasik spektrum kestirim yöntemleriyle birlikte kullanılmaktadır. Klasik spektrum kestirim yöntemleri ile bu çalışmada önerilen gürbüz yöntemler hem Gauss dağılımına hem de Gauss olmayan kuyruklu (heavytailed) dağılıma sahip birer olasılıksal süreç altında denenerek performansları karşılaştırılmıştır. Elde edilen sonuçlar, önerilen gürbüz parametrik olmayan spektrum kestirim yöntemlerinin Gauss dağılımına sahip olmayan ortamlar için klasik yöntemlere nazaran daha iyi performans sergileyebildiklerini göstermektedir.
In this study, robust nonparametric spectral estimation methods for non-Gaussian environments are proposed. For this aim, the autocorrelation function estimator obtained from sample spatial sign covariance matrix is used together with classical nonparametric spectral estimation methods such as periodogram and Blackman-Tukey. Performances of classical spectral estimation methods and robust methods suggested in this study are compared by applying them to one Gaussian process and one non-Gaussian heavy-tailed stochastic process. The results obtained show that, for non-Gaussian environments, the proposed robust nonparametric spectral estimation methods could perform better compared to the classical methods.

Description

23nd Signal Processing and Communications Applications Conference (SIU)

Keywords

Robust estimation, Nonparametric spectral estimatiom, Sample spatial sign covariance matrix, Heavy-tailed distributions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A

Source

2015 23rd Signal Processing and Communications Applications Conference, SIU 2015

Volume

Issue

Start Page

2274

End Page

2277
Page Views

680

checked on Oct 06, 2025

Downloads

275

checked on Oct 06, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available