Klasik Parametrik Olmayan Spektrum Kestirim Tekniklerini Gürbüzleştirmek için Bir Yöntem
No Thumbnail Available
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışmada, Gauss dağılımına sahip olmayan
ortamlar için gürbüz parametrik olmayan spektrum kestirim
yöntemleri önerilmektedir. Bu amaca yönelik olarak, örnek
uzamsal işaret ortak değişinti matrisinden (spatial sign
covariance matrix) elde edilen özilinti fonksiyonu kestiricisi
(autocorrelation function estimator), periyodogram ve
Blackman-Tukey gibi klasik spektrum kestirim yöntemleriyle
birlikte kullanılmaktadır. Klasik spektrum kestirim
yöntemleri ile bu çalışmada önerilen gürbüz yöntemler hem
Gauss dağılımına hem de Gauss olmayan kuyruklu (heavytailed)
dağılıma sahip birer olasılıksal süreç altında denenerek
performansları karşılaştırılmıştır. Elde edilen sonuçlar,
önerilen gürbüz parametrik olmayan spektrum kestirim
yöntemlerinin Gauss dağılımına sahip olmayan ortamlar için
klasik yöntemlere nazaran daha iyi performans
sergileyebildiklerini göstermektedir.
In this study, robust nonparametric spectral estimation methods for non-Gaussian environments are proposed. For this aim, the autocorrelation function estimator obtained from sample spatial sign covariance matrix is used together with classical nonparametric spectral estimation methods such as periodogram and Blackman-Tukey. Performances of classical spectral estimation methods and robust methods suggested in this study are compared by applying them to one Gaussian process and one non-Gaussian heavy-tailed stochastic process. The results obtained show that, for non-Gaussian environments, the proposed robust nonparametric spectral estimation methods could perform better compared to the classical methods.
In this study, robust nonparametric spectral estimation methods for non-Gaussian environments are proposed. For this aim, the autocorrelation function estimator obtained from sample spatial sign covariance matrix is used together with classical nonparametric spectral estimation methods such as periodogram and Blackman-Tukey. Performances of classical spectral estimation methods and robust methods suggested in this study are compared by applying them to one Gaussian process and one non-Gaussian heavy-tailed stochastic process. The results obtained show that, for non-Gaussian environments, the proposed robust nonparametric spectral estimation methods could perform better compared to the classical methods.
Description
23nd Signal Processing and Communications Applications Conference (SIU)
Keywords
Robust estimation, Nonparametric spectral estimatiom, Sample spatial sign covariance matrix, Heavy-tailed distributions
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A
Source
2015 23rd Signal Processing and Communications Applications Conference, SIU 2015
Volume
Issue
Start Page
2274
End Page
2277