Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2021-01-24T18:28:52Z-
dc.date.available2021-01-24T18:28:52Z-
dc.date.issued2012-
dc.identifier.isbn978-146730056-8-
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204467-
dc.identifier.urihttps://hdl.handle.net/11147/9868-
dc.description.abstractIn this work, cancer recognition in digital cytology data was carried out using quasi-supervised learning. The data subject to recognition contained ground-truth data only in the form of a labeled set of cancer-free samples and the cancerous samples were provided along with cancer-free samples in an unlabeled mixed dataset. In this framework, a predictive method was derived to label future samples as cancerous or cancer-free based on this data at hand together with an analytical method to label the cancerous samples in the mixed dataset. In the experiments, the methods based on the quasi-supervised learning algorithm achieved higher recognition performance in both cases than the alternative approaches based on supervised support vector machine classifiers. These results indicate that the quasi-supervised learning is the only valid approach in both analytical and predictive recognition when only labeled cancer-free samples are available for statistical learning. © 2012 IEEE.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalytical and predictive quasi-supervised learning for cancer recognition in digital cytologyen_US
dc.titleDijital sitolojide kanser tanıma için analitik ve öngörüsel yarı-güdümlü öğrenmeen_US
dc.typeConference Objecten_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.scopus2-s2.0-84863455652en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/SIU.2012.6204467-
dc.relation.doi10.1109/SIU.2012.6204467en_US
dc.coverage.doi10.1109/SIU.2012.6204467en_US
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Analytical_and_predictive.pdf267.62 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Jul 8, 2023

Page view(s)

84
checked on Jun 19, 2023

Download(s)

6
checked on Jun 19, 2023

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.