Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2021-01-24T18:28:52Z-
dc.date.available2021-01-24T18:28:52Z-
dc.date.issued2012-
dc.identifier.isbn978-146730056-8-
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204467-
dc.identifier.urihttps://hdl.handle.net/11147/9868-
dc.description.abstractIn this work, cancer recognition in digital cytology data was carried out using quasi-supervised learning. The data subject to recognition contained ground-truth data only in the form of a labeled set of cancer-free samples and the cancerous samples were provided along with cancer-free samples in an unlabeled mixed dataset. In this framework, a predictive method was derived to label future samples as cancerous or cancer-free based on this data at hand together with an analytical method to label the cancerous samples in the mixed dataset. In the experiments, the methods based on the quasi-supervised learning algorithm achieved higher recognition performance in both cases than the alternative approaches based on supervised support vector machine classifiers. These results indicate that the quasi-supervised learning is the only valid approach in both analytical and predictive recognition when only labeled cancer-free samples are available for statistical learning. © 2012 IEEE.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalytical and predictive quasi-supervised learning for cancer recognition in digital cytologyen_US
dc.titleDijital sitolojide kanser tanıma için analitik ve öngörüsel yarı-güdümlü öğrenmeen_US
dc.typeConference Objecten_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.scopus2-s2.0-84863455652en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/SIU.2012.6204467-
dc.relation.doi10.1109/SIU.2012.6204467en_US
dc.coverage.doi10.1109/SIU.2012.6204467en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Analytical_and_predictive.pdf267.62 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

174
checked on Nov 18, 2024

Download(s)

108
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.