Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9822
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖnder, Devrim-
dc.contributor.authorSarıoğlu, Sülen-
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2021-01-24T18:28:39Z-
dc.date.available2021-01-24T18:28:39Z-
dc.date.issued2010-
dc.identifier.isbn978-142446382-4-
dc.identifier.urihttps://doi.org/10.1109/BIYOMUT.2010.5479863-
dc.identifier.urihttps://hdl.handle.net/11147/9822-
dc.description.abstractThe aim of this work is to perform automated texture classification of histology slide images in health and cancerous conditions using quasi-supervised statistical learning method. Tissue images were acquired from histological slides of human colon and were seperated into two groups in terms of normal and disease conditions. Texture feature vectors corresponding to tissue segments of each image were calculated using co-occurrence matrices. Different texture regions were determined by the quasi-supervised statistical learning method using texture features of normal and cancerous groups. ©2010 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.ispartof2010 15th National Biomedical Engineering Meeting, BIYOMUT2010en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCo-occurrence matriceen_US
dc.subjectQuasi-supervised statistical learningen_US
dc.subjectTexture classificationen_US
dc.titleHistoloji görüntülerinde kanserli desenlerin yarı güdümlü öğrenme yöntemiyle tam otomatik sınıflandırılmasıen_US
dc.title.alternativeAutomated classification of cancerous textures in histology images using quasi-supervised learning algorithmen_US
dc.typeConference Objecten_US
dc.institutionauthorÖnder, Devrim-
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.scopus2-s2.0-77954442200en_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/BIYOMUT.2010.5479863-
dc.relation.doi10.1109/BIYOMUT.2010.5479863en_US
dc.coverage.doi10.1109/BIYOMUT.2010.5479863en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Automated_classification.pdf493.02 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

Page view(s)

186
checked on Nov 18, 2024

Download(s)

72
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.