Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9579
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtakan, Barış-
dc.contributor.authorGüleç, Fatih-
dc.date.accessioned2020-07-25T22:17:42Z-
dc.date.available2020-07-25T22:17:42Z-
dc.date.issued2019-
dc.identifier.issn2161-3915-
dc.identifier.issn2161-5748-
dc.identifier.urihttps://doi.org/10.1002/ett.3699-
dc.identifier.urihttps://hdl.handle.net/11147/9579-
dc.description.abstractMolecular communication (MC) is an important nanoscale communication paradigm, which is employed for the interconnection of the nanomachines (NMs) to form nanonetworks. A transmitter NM (TN) sends the information symbols by emitting molecules into the transmission medium and a receiver NM (RN) receives the information symbols by sensing the molecule concentration. In this paper, a model of how an RN measures and reconstructs the molecular signal is proposed. The signal around the RN is assumed to be a Gaussian random process instead of the less realistic deterministic approach. After the reconstructed signal is derived as a doubly stochastic poisson process, the distortion between the signal around the RN and the reconstructed signal is derived as a new performance parameter in MC systems. The derived distortion, which is a function of system parameters such as RN radius, sampling period, and the diffusion coefficient of the channel, is shown to be valid by employing random walk simulations. Then, it is shown that the original signal can be satisfactorily reconstructed with a sufficiently low level of distortion. Finally, optimum RN design parameters, namely, RN radius, sampling period, and sampling frequency, are derived by minimizing the signal distortion. The simulation results reveal that there is a trade-off among the RN design parameters which can be jointly set for a desired signal distortion.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofTransactions on Emerging Telecommunications Technologiesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSignal reconstruction in diffusion-based molecular communicationen_US
dc.typeArticleen_US
dc.authorid0000-0003-1031-6108-
dc.institutionauthorAtakan, Barış-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume30en_US
dc.identifier.issue12en_US
dc.identifier.wosWOS:000480180600001en_US
dc.identifier.scopus2-s2.0-85076387961en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/ett.3699-
dc.relation.doi10.1002/ett.3699en_US
dc.coverage.doi10.1002/ett.3699en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
crisitem.author.dept01.01. Units Affiliated to the Rectorate-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Transactions on Emerging.pdf834.51 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Mar 22, 2024

WEB OF SCIENCETM
Citations

4
checked on Mar 16, 2024

Page view(s)

606
checked on Mar 25, 2024

Download(s)

44
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.