Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9528
Title: Inter-Granular Cracking Through Strain Gradient Crystal Plasticity and Cohesive Zone Modeling Approaches
Authors: Yalçınkaya, Tuncay
Özdemir, İzzet
Fırat, Ali Osman
Keywords: Strain gradient plasticity
Cohesive zone modeling
Fracture
Inter-granular crack
Polycrystalline plasticity
Publisher: Elsevier
Abstract: Even though intergranular fracture is generally regarded as a macroscopically brittle mechanism, there are various cases where the fracture occurs at the grain boundaries with considerable plastic deformation at the macroscopic scale. There exists several microstructural reasons for grain boundaries to host crack initiation. They can interact with impurities and defects, can provide preferential location for precipitation, can behave as a source of dislocations and can impede the movement of dislocations as well. The understanding of the crack initiation and propagation at the grain boundaries requires the analysis of the grain boundary orientation and the orientation mismatch between the neighboring grains and the related the stress concentration, which is only possible through the combination of micro-mechanical plasticity and fracture mechanics. For this reason the current work studies the evolution of plasticity in three dimensional Voronoi based microstructures through a strain gradient crystal plasticity framework (see e.g. Yalcinkaya et al., 2011; Yalcinkaya et al., 2012; Yalcinkaya, 2016) and incorporates a potential based cohesive zone model (see Park et al., 2009; Cerrone et al., 2014) at the grain boundaries for the crack initiation and propagation. The numerical examples considers the effect of the orientation distribution, the grain boundary conditions, the specimen size and the fracture energy parameter on the intergranular fracture behavior of micron-sized specimens. The study presents important conclusions for the modeling of fracture at this length scale.
URI: https://doi.org/10.1016/j.tafmec.2019.102306
https://hdl.handle.net/11147/9528
ISSN: 0167-8442
1872-7638
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S0167844219300242-main.pdf5.49 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Jan 24, 2025

WEB OF SCIENCETM
Citations

16
checked on Nov 16, 2024

Page view(s)

370
checked on Jan 27, 2025

Download(s)

248
checked on Jan 27, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.