Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErgün, Aslı-
dc.contributor.authorErgün, Serkan-
dc.contributor.authorÜnlü, Mehmet Zübeyir-
dc.contributor.authorGüngör, Cengiz-
dc.date.accessioned2020-07-25T22:16:52Z-
dc.date.available2020-07-25T22:16:52Z-
dc.date.issued2019-
dc.identifier.issn1863-1703-
dc.identifier.issn1863-1711-
dc.identifier.urihttps://doi.org/10.1007/s11760-019-01483-8-
dc.identifier.urihttps://hdl.handle.net/11147/9526-
dc.description.abstractVarious measures are used to determine similarity ratios among images before and after image registration. Image registration methods are based on finding the translation, rotation, and scaling parameters that maximize the similarity between two images by taking advantage of the feature points and densities that are found. While the similarity criterion is calculated, it is possible and advantageous to use approximation methods on the graphs based on information theory. The current study proposes a new similarity measure based on saliency-weighted orthogonal regression derived from the weighted sums of the saliency map of the orthogonal regression residuals formed on the entropic graph. It is evaluated in terms of both quantitative and qualitative methods and compared with other graph-based similarity measures.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSignal Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEntropic graphsen_US
dc.subjectImage registrationen_US
dc.subjectParameter searchen_US
dc.subjectOptimization techniquesen_US
dc.subjectFeature setsen_US
dc.subjectJoint saliency mapen_US
dc.titleA saliency-weighted orthogonal regression-based similarity measure for entropic graphsen_US
dc.typeArticleen_US
dc.authorid0000-0003-1605-0160-
dc.institutionauthorÜnlü, Mehmet Zübeyir-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume13en_US
dc.identifier.issue7en_US
dc.identifier.startpage1377en_US
dc.identifier.endpage1385en_US
dc.identifier.wosWOS:000490956300015en_US
dc.identifier.scopus2-s2.0-85065290646en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11760-019-01483-8-
dc.relation.doi10.1007/s11760-019-01483-8en_US
dc.coverage.doi10.1007/s11760-019-01483-8en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
s11760-019-01483-8.pdf1.61 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

3,798
checked on Nov 18, 2024

Download(s)

120
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.