Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9377
Title: Structural, Electronic and Vibrational Properties of Ultra-Thin Octahedrally Coordinated Structure of Euo2
Authors: Özcan, Mehmet
Özen, Sercan
Yağmurcukardeş, Mehmet
Şahin, Hasan
Keywords: Europium compounds
Vibrational properties
Electronic properties
Publisher: Elsevier
Abstract: Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.
URI: https://doi.org/10.1016/j.jmmm.2019.165668
https://hdl.handle.net/11147/9377
ISSN: 0304-8853
1873-4766
Appears in Collections:Photonics / Fotonik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S0304885319305827-main.pdf807.07 kBAdobe PDFView/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.