Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9086
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Büyükaşık, Engin | - |
dc.contributor.author | Kafkas Demirci, Gizem | - |
dc.date.accessioned | 2020-07-25T22:03:31Z | - |
dc.date.available | 2020-07-25T22:03:31Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1015-8634 | - |
dc.identifier.uri | https://doi.org/10.4134/BKMS.b180325 | - |
dc.identifier.uri | https://hdl.handle.net/11147/9086 | - |
dc.description.abstract | Let R be a ring with unity. Given modules M-R and N-R, M-R is said to be absolutely N-R-pure if M circle times N -> L circle times N is a monomorphism for every extension L-R of M-R. For a module M-R, the subpurity domain of M-R is defined to be the collection of all modules N-R such that M-R is absolutely N-R-pure. Clearly M-R is absolutely F-R-pure for every flat module F-R, and that M-R is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, M-R is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. R-R is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is Priifer if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Korean Mathematical Society | en_US |
dc.relation.ispartof | Bulletin of The Korean Mathematical Society | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Injective modules | en_US |
dc.subject | FP-injective modules | en_US |
dc.subject | Subpurity domain | en_US |
dc.subject | Flat modules | en_US |
dc.title | Rings and modules characterized by opposites of FP-injectivity | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Büyükaşık, Engin | - |
dc.institutionauthor | Kafkas Demirci, Gizem | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 56 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 439 | en_US |
dc.identifier.endpage | 450 | en_US |
dc.identifier.wos | WOS:000462483900015 | en_US |
dc.identifier.scopus | 2-s2.0-85067250420 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.4134/BKMS.b180325 | - |
dc.relation.doi | 10.4134/BKMS.b180325 | en_US |
dc.coverage.doi | 10.4134/BKMS.b180325 | en_US |
dc.identifier.wosquality | Q4 | - |
dc.identifier.scopusquality | Q3 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
RINGS AND MODULES.pdf | 322.5 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
182
checked on Nov 18, 2024
Download(s)
66
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.