Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9086
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Büyükaşık, Engin | - |
dc.contributor.author | Kafkas Demirci, Gizem | - |
dc.date.accessioned | 2020-07-25T22:03:31Z | - |
dc.date.available | 2020-07-25T22:03:31Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1015-8634 | - |
dc.identifier.uri | https://doi.org/10.4134/BKMS.b180325 | - |
dc.identifier.uri | https://hdl.handle.net/11147/9086 | - |
dc.description.abstract | Let R be a ring with unity. Given modules M-R and N-R, M-R is said to be absolutely N-R-pure if M circle times N -> L circle times N is a monomorphism for every extension L-R of M-R. For a module M-R, the subpurity domain of M-R is defined to be the collection of all modules N-R such that M-R is absolutely N-R-pure. Clearly M-R is absolutely F-R-pure for every flat module F-R, and that M-R is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, M-R is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. R-R is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is Priifer if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Korean Mathematical Society | en_US |
dc.relation.ispartof | Bulletin of The Korean Mathematical Society | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Injective modules | en_US |
dc.subject | FP-injective modules | en_US |
dc.subject | Subpurity domain | en_US |
dc.subject | Flat modules | en_US |
dc.title | Rings and Modules Characterized by Opposites of Fp-Injectivity | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Büyükaşık, Engin | - |
dc.institutionauthor | Kafkas Demirci, Gizem | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 56 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 439 | en_US |
dc.identifier.endpage | 450 | en_US |
dc.identifier.wos | WOS:000462483900015 | - |
dc.identifier.scopus | 2-s2.0-85067250420 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.4134/BKMS.b180325 | - |
dc.relation.doi | 10.4134/BKMS.b180325 | en_US |
dc.coverage.doi | 10.4134/BKMS.b180325 | - |
dc.identifier.wosquality | Q4 | - |
dc.identifier.scopusquality | Q3 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
RINGS AND MODULES.pdf | 322.5 kB | Adobe PDF | View/Open |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.