Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9086
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorKafkas Demirci, Gizem-
dc.date.accessioned2020-07-25T22:03:31Z-
dc.date.available2020-07-25T22:03:31Z-
dc.date.issued2019-
dc.identifier.issn1015-8634-
dc.identifier.urihttps://doi.org/10.4134/BKMS.b180325-
dc.identifier.urihttps://hdl.handle.net/11147/9086-
dc.description.abstractLet R be a ring with unity. Given modules M-R and N-R, M-R is said to be absolutely N-R-pure if M circle times N -> L circle times N is a monomorphism for every extension L-R of M-R. For a module M-R, the subpurity domain of M-R is defined to be the collection of all modules N-R such that M-R is absolutely N-R-pure. Clearly M-R is absolutely F-R-pure for every flat module F-R, and that M-R is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, M-R is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. R-R is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is Priifer if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained.en_US
dc.language.isoenen_US
dc.publisherKorean Mathematical Societyen_US
dc.relation.ispartofBulletin of The Korean Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInjective modulesen_US
dc.subjectFP-injective modulesen_US
dc.subjectSubpurity domainen_US
dc.subjectFlat modulesen_US
dc.titleRings and modules characterized by opposites of FP-injectivityen_US
dc.typeArticleen_US
dc.institutionauthorBüyükaşık, Engin-
dc.institutionauthorKafkas Demirci, Gizem-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume56en_US
dc.identifier.issue2en_US
dc.identifier.startpage439en_US
dc.identifier.endpage450en_US
dc.identifier.wosWOS:000462483900015en_US
dc.identifier.scopus2-s2.0-85067250420en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.4134/BKMS.b180325-
dc.relation.doi10.4134/BKMS.b180325en_US
dc.coverage.doi10.4134/BKMS.b180325en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
RINGS AND MODULES.pdf322.5 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

182
checked on Nov 18, 2024

Download(s)

66
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.