Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8922
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdem, Tahir Kemal-
dc.contributor.authorCengiz, Okan-
dc.contributor.authorTayfur, Gökmen-
dc.date.accessioned2020-07-18T08:34:08Z-
dc.date.available2020-07-18T08:34:08Z-
dc.date.issued2020-
dc.identifier.issn2193-567X-
dc.identifier.issn2191-4281-
dc.identifier.urihttps://doi.org/10.1007/s13369-019-04210-0-
dc.identifier.urihttps://hdl.handle.net/11147/8922-
dc.description.abstractGypsum is widely used in constructions owing to its easy application, zero shrinkage, and excellent fire resistance. Several parameters can affect the properties of gypsum pastes. To study the strength of the gypsum pastes experimentally by trying all these parameters is time-consuming and costly. Therefore, artificial intelligence methods can be very useful to predict the paste strength, which, in turn, can reduce the number of trial batches. Based on experimental data, the generalized regression neural network (GRNN) and empirical models were developed to predict strength of gypsum pastes containing fly ash (FA) and blast furnace slag (BFS). Gypsum content, pozzolan content, curing temperature, curing duration, and testing age constituted the input variables of the models while the paste strength was the target output. The trained and tested GRNN model was found to be successful in predicting strength. Sensitivity analysis by the GRNN model revealed that the curing duration and temperature were important sensitive parameters. In addition to the GRNN model, empirical models were proposed for the strength prediction. The same input variables formed the input vectors of the empirical models. The same dataset used for the calibration of the GRNN model was employed to establish the empirical models by employing genetic algorithm (GA) method. The empirical models were successfully validated. The GRNN and GA_based empirical models were also tested against the multi-linear regression (MLR) and multi-nonlinear regression (MNLR) models. The results showed the outperformance of the GRNN and the GA_based empirical models over the others.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGRNNen_US
dc.subjectEmpirical modelen_US
dc.subjectGenetic algorithmsen_US
dc.subjectGypsum paste strengthen_US
dc.subjectFly ashen_US
dc.subjectBlast furnace slagen_US
dc.titleGeneralized regression neural network and empirical models to predict the strength of gypsum pastes containing fly ash and blast furnace slagen_US
dc.typeArticleen_US
dc.institutionauthorErdem, Tahir Kemal-
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume45en_US
dc.identifier.issue5en_US
dc.identifier.startpage3671en_US
dc.identifier.endpage3681en_US
dc.identifier.wosWOS:000492939500002en_US
dc.identifier.scopus2-s2.0-85074681298en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s13369-019-04210-0-
dc.relation.doi10.1007/s13369-019-04210-0en_US
dc.coverage.doi10.1007/s13369-019-04210-0en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Erdem2020_Article_Generalized.pdf1.05 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

282
checked on Nov 18, 2024

Download(s)

42
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.