Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/8918
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Batal, Ahmet | - |
dc.contributor.author | Özsarı, Türker | - |
dc.date.accessioned | 2020-07-18T08:34:08Z | - |
dc.date.available | 2020-07-18T08:34:08Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0005-1098 | - |
dc.identifier.issn | 1873-2836 | - |
dc.identifier.uri | https://doi.org/10.1016/j.automatica.2019.108531 | - |
dc.identifier.uri | https://hdl.handle.net/11147/8918 | - |
dc.description.abstract | In this paper, we prove the output feedback stabilization for the linearized Korteweg-de Vries (KdV) equation posed on a finite domain in the case the full state of the system cannot be measured. We assume that there is a sensor at the left end point of the domain capable of measuring the first and second order boundary traces of the solution. This allows us to design a suitable observer system whose states can be used for constructing boundary feedbacks acting at the right endpoint so that both the observer and the original plant become exponentially stable. Stabilization of the original system is proved in the L-2-sense, while the convergence of the observer system to the original plant is also proved in higher order Sobolev norms. The standard backstepping approach used to construct a left endpoint controller fails and presents mathematical challenges when building right endpoint controllers due to the overdetermined nature of the related kernel models. In order to deal with this difficulty we use the method of Ozsan and Batal, (2019) which is based on using modified target systems involving extra trace terms. In addition, we show that the number of controllers and boundary measurements can be reduced to one, with the cost of a slightly lower exponential rate of decay. We provide numerical simulations illustrating the efficacy of our controllers. (C) 2019 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Automatica | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Korteweg de-Vries equation | en_US |
dc.subject | Backstepping | en_US |
dc.subject | Feedback stabilization | en_US |
dc.subject | Boundary controller | en_US |
dc.title | Output feedback stabilization of the linearized Korteweg-de Vries equation with right endpoint controllers | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0003-4240-5252 | - |
dc.institutionauthor | Batal, Ahmet | - |
dc.institutionauthor | Özsarı, Türker | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 109 | en_US |
dc.identifier.wos | WOS:000488416900010 | en_US |
dc.identifier.scopus | 2-s2.0-85071337532 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.automatica.2019.108531 | - |
dc.relation.doi | 10.1016/j.automatica.2019.108531 | en_US |
dc.coverage.doi | 10.1016/j.automatica.2019.108531 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S0005109819303929-main.pdf | 937.91 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
6
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
5
checked on Nov 16, 2024
Page view(s)
1,870
checked on Nov 18, 2024
Download(s)
82
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.