Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8905
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzçelik, Hüseyin Gökberk-
dc.contributor.authorÖzdemir, Abdullah Cihan-
dc.contributor.authorKim, Bohung-
dc.contributor.authorBarışık, Murat-
dc.date.accessioned2020-07-18T08:34:07Z-
dc.date.available2020-07-18T08:34:07Z-
dc.date.issued2020-
dc.identifier.issn0892-7022-
dc.identifier.issn1029-0435-
dc.identifier.urihttps://doi.org/10.1080/08927022.2019.1690145-
dc.identifier.urihttps://hdl.handle.net/11147/8905-
dc.description.abstractWetting at nanoscale is a property of a three-dimensional region with a finite length into the solid domain from the surface. Understanding the extent of the solid region effective on wetting is important for recent coating applications as well as for both crystalline and amorphous solids of different atomic ordering. For such a case, we studied the wetting behaviour of silicon surfaces at various crystalline and amorphous states. Molecular distributions of amorphous systems were varied by changing the amorphisation conditions of silicon. Semi-cylindrical water droplets were formed on the surfaces to be large enough to remain independent of line tension and Tolman length effects. Contact angles showed up to 38% variation by the change in the atomic orientation of silicon. Instead of a homogeneous solid density definition, we calculated different solid densities for a given surface measured inside different extents from the interface. We correlated the observed wetting variation with each of these different solid densities to determine which extent governs the wetting variation. We observed that the variation of solid density measured inside a 0.13 nm extent from the surface reflected the variation of wetting angle better for both single crystalline and amorphous silicon surfaces.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofMolecular Simulationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSurface wettingen_US
dc.subjectCrystalline materialsen_US
dc.subjectMolecular dynamicsen_US
dc.titleWetting of single crystalline and amorphous silicon surfaces: effective range of intermolecular forces for wettingen_US
dc.typeArticleen_US
dc.institutionauthorÖzçelik, Hüseyin Gökberk-
dc.institutionauthorÖzdemir, Abdullah Cihan-
dc.institutionauthorBarışık, Murat-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume46en_US
dc.identifier.issue3en_US
dc.identifier.startpage224en_US
dc.identifier.endpage234en_US
dc.identifier.wosWOS:000500787100001en_US
dc.identifier.scopus2-s2.0-85075451686en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/08927022.2019.1690145-
dc.relation.doi10.1080/08927022.2019.1690145en_US
dc.coverage.doi10.1080/08927022.2019.1690145en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
08927022.2019.pdf5.15 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 9, 2024

Page view(s)

260
checked on Nov 18, 2024

Download(s)

90
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.