Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/8904
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sharghi, Elnaz | - |
dc.contributor.author | Nourani, Vahid | - |
dc.contributor.author | Behfar, Nazanin | - |
dc.contributor.author | Tayfur, Gökmen | - |
dc.date.accessioned | 2020-07-18T08:34:07Z | - |
dc.date.available | 2020-07-18T08:34:07Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0263-2241 | - |
dc.identifier.issn | 1873-412X | - |
dc.identifier.uri | https://doi.org/10.1016/j.measurement.2019.07.048 | - |
dc.identifier.uri | https://hdl.handle.net/11147/8904 | - |
dc.description.abstract | In this paper, seepage of Sattarkhan earthen dam in northwest Iran was simulated using various artificial intelligence (AI) models (e.g., Feed forward neural network, Adaptive neural fuzzy inference system and Support vector regression) and linear ARIMA model based on different input combinations. Both jittering pre-processing and ensembling post-processing methods were also used in order to enhance the performance of the used AI-based data driven methods. For this purpose, various jittered datasets were produced by imposing noises (at different levels) to the original time series to enlarge the training data sample space. Further, three techniques of simple linear, weighted linear and nonlinear neural averaging were considered for pre-post processing purpose. The obtained results indicated that using both jittering and ensembling (especially neural ensemble) enhanced the modeling performance by almost 30% in the testing phase. (C) 2019 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Measurement | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Seepage | en_US |
dc.subject | Ensemble method | en_US |
dc.subject | Jittering | en_US |
dc.subject | Mutual information | en_US |
dc.title | Data pre-post processing methods in AI-based modeling of seepage through earthen dams | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Tayfur, Gökmen | - |
dc.department | İzmir Institute of Technology. Civil Engineering | en_US |
dc.identifier.volume | 147 | en_US |
dc.identifier.wos | WOS:000487249900017 | en_US |
dc.identifier.scopus | 2-s2.0-85069829933 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.measurement.2019.07.048 | - |
dc.relation.doi | 10.1016/j.measurement.2019.07.048 | en_US |
dc.coverage.doi | 10.1016/j.measurement.2019.07.048 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.03. Department of Civil Engineering | - |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S0263224119306773-main.pdf | 2.52 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
28
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
26
checked on Nov 16, 2024
Page view(s)
8,782
checked on Nov 18, 2024
Download(s)
358
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.