Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/8903
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aksoylu, Burak | - |
dc.contributor.author | Kaya, Adem | - |
dc.date.accessioned | 2020-07-18T08:34:06Z | - |
dc.date.available | 2020-07-18T08:34:06Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1070-5325 | - |
dc.identifier.issn | 1099-1506 | - |
dc.identifier.uri | https://doi.org/10.1002/nla.2267 | - |
dc.identifier.uri | https://hdl.handle.net/11147/8903 | - |
dc.description.abstract | We study smoothers for the multigrid method of the second kind arising from Fredholm integral equations. Our model problems use nonlocal governing operators that enforce local boundary conditions. For discretization, we utilize the Nystrom method with the trapezoidal rule. We find the eigenvalues of matrices associated to periodic, antiperiodic, and Dirichlet problems in terms of the nonlocality parameter and mesh size. Knowing explicitly the spectrum of the matrices enables us to analyze the behavior of smoothers. Although spectral analyses exist for finding effective smoothers for 1D elliptic model problems, to the best of our knowledge, a guiding spectral analysis is not available for smoothers of a multigrid of the second kind. We fill this gap in the literature. The Picard iteration has been the default smoother for a multigrid of the second kind. Jacobi-like methods have not been considered as viable options. We propose two strategies. The first one focuses on the most oscillatory mode and aims to damp it effectively. For this choice, we show that weighted-Jacobi relaxation is equivalent to the Picard iteration. The second strategy focuses on the set of oscillatory modes and aims to damp them as quickly as possible, simultaneously. Although the Picard iteration is an effective smoother for model nonlocal problems under consideration, we show that it is possible to find better than ones using the second strategy. We also shed some light on internal mechanism of the Picard iteration and provide an example where the Picard iteration cannot be used as a smoother. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Inc. | en_US |
dc.relation.ispartof | Numerical Linear Algebra With Applications | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Local boundary condition | en_US |
dc.subject | Multigrid of the second kind | en_US |
dc.subject | Nonlocal operator | en_US |
dc.subject | Smoother | en_US |
dc.subject | Picard iteration | en_US |
dc.title | On Smoothers for Multigrid of the Second Kind | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Kaya, Adem | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 26 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.wos | WOS:000496150100002 | en_US |
dc.identifier.scopus | 2-s2.0-85074111622 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1002/nla.2267 | - |
dc.relation.doi | 10.1002/nla.2267 | en_US |
dc.coverage.doi | 10.1002/nla.2267 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
nla.2267.pdf | 853.77 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
194
checked on Dec 9, 2024
Download(s)
188
checked on Dec 9, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.