Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8888
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGörgülü, İbrahimcan-
dc.contributor.authorCarbone, Giuseppe-
dc.contributor.authorDede, Mehmet İsmet Can-
dc.date.accessioned2020-07-18T08:34:05Z-
dc.date.available2020-07-18T08:34:05Z-
dc.date.issued2020-
dc.identifier.issn0374-1052-
dc.identifier.issn0094-114X-
dc.identifier.urihttps://doi.org/10.1016/j.mechmachtheory.2019.103614-
dc.identifier.urihttps://hdl.handle.net/11147/8888-
dc.descriptionCarbone, Giuseppe/0000-0003-0831-8358en_US
dc.descriptionWOS: 000502050800019en_US
dc.description.abstractHaptic devices are used for displaying a range of mechanical impedance values to the user. This impedance is regulated by a real-time control loop depending on the position information of the end-effector, which is usually acquired indirectly by using forward kinematics equations. Nevertheless, the kinematic model is insufficient to obtain accurate values if there are non-negligible compliant displacements. This gives a strong motivation for implementing a real-time stiffness model in the haptic control loop for improving its accuracy. Additionally, stiffness performance indices can be used at the design stage for enhancing the haptic devices impedance range within optimal design procedures. Fast solutions of a stiffness model are required for a real-time control as well as for decreasing the optimization time during a design process with a trade-off between accuracy and computational costs. In this study, we propose a computation time-efficient stiffness analysis of a parallel haptic device mechanism. The accuracy and computational costs of the proposed model are calculated and compared with a model that is obtained via a finite element method to demonstrate the effectiveness of the proposed approach with the desired real-time and accuracy performance. (C) 2019 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofMechanism and Machine Theoryen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStiffnessen_US
dc.subjectParallel manipulatoren_US
dc.subjectVirtual joint methoden_US
dc.subjectHaptic mechanismen_US
dc.titleTime efficient stiffness model computation for a parallel haptic mechanism via the virtual joint methoden_US
dc.typeArticleen_US
dc.institutionauthorGörgülü, İbrahimcan-
dc.institutionauthorDede, Mehmet İsmet Can-
dc.departmentIzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume143en_US
dc.identifier.wosWOS:000502050800019en_US
dc.identifier.scopus2-s2.0-85072623150en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.mechmachtheory.2019.103614-
dc.relation.doi10.1016/j.mechmachtheory.2019.103614en_US
dc.coverage.doi10.1016/j.mechmachtheory.2019.103614en_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

4
checked on Jul 14, 2022

WEB OF SCIENCETM
Citations

12
checked on Jun 21, 2022

Page view(s)

9,954
checked on Aug 8, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.