Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8823
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOnay, Fatih-
dc.contributor.authorMert, Ahmet-
dc.date.accessioned2020-07-18T08:31:27Z-
dc.date.available2020-07-18T08:31:27Z-
dc.date.issued2020-
dc.identifier.issn1746-8094-
dc.identifier.issn1746-8108-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2020.101881-
dc.identifier.urihttps://hdl.handle.net/11147/8823-
dc.description.abstractThis paper introduces phasor representation of electromyography (EMG) feature extraction (PRE). The well-known EMG signal analysis methods, namely root mean square (RMS), and waveform length (WL) are adopted into phasor form depending electrode placement. The values of these methods are computed from 8-channel EMG signals, and their magnitudes with respect to origin are used to construct phasor represented features in this study. The class separability of the PRE is strengthened by adding difference EMG and Euclidean distanced phasor in order to obtain improved feature set against force and electrode variations. The simulations (three schemes) are performed on publicly available EMG dataset on transradial amputees, and the results are presented in terms of accuracy and processing time considering the control strategies of a prosthetic hand. Linear (LDA), and quadratic (QDA) discriminant analysis, and knearest neighbor (k-NN) classifiers are trained, and tested by the PRE features. Our method outperforms previous accuracy rates in some cases, and reaches to accuracy results of the first study using this dataset without using any reduction method. In our simulations, accuracy rates up to 71.17% (PRE with QDA) for six classes hand movements with three force levels are obtained decreasing processing time by 81.83%. (C) 2020 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectromyographyen_US
dc.subjectPattern recognitionen_US
dc.subjectProsthetic hand controlen_US
dc.subjectMyoelectric controlen_US
dc.subjectTransradial amputeesen_US
dc.titlePhasor represented EMG feature extraction against varying contraction level of prosthetic controlen_US
dc.typeArticleen_US
dc.institutionauthorOnay, Fatih-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume59en_US
dc.identifier.wosWOS:000528276200006en_US
dc.identifier.scopus2-s2.0-85079859703en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.bspc.2020.101881-
dc.relation.doi10.1016/j.bspc.2020.101881en_US
dc.coverage.doi10.1016/j.bspc.2020.101881en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1746809420300379-main.pdf1.76 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 9, 2024

Page view(s)

172
checked on Nov 18, 2024

Download(s)

154
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.