Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8819
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCavalcanti, Marcelo M.en_US
dc.contributor.authorCorrea, Wellington J.en_US
dc.contributor.authorÖzsarı, Türkeren_US
dc.contributor.authorSepulveda, Mauricioen_US
dc.contributor.authorVejar-Aseme, Rodrigoen_US
dc.date.accessioned2020-07-18T08:31:27Z-
dc.date.available2020-07-18T08:31:27Z-
dc.date.issued2020en_US
dc.identifier.issn0360-5302-
dc.identifier.issn1532-4133-
dc.identifier.urihttps://doi.org/10.1080/03605302.2020.1760885-
dc.identifier.urihttps://hdl.handle.net/11147/8819-
dc.description.abstractIn this paper, we study the defocusing nonlinear Schrodinger equation with a locally distributed damping on a smooth bounded domain as well as on the whole space and on an exterior domain. We first construct approximate solutions using the theory of monotone operators. We show that approximate solutions decay exponentially fast in the L-2-sense by using the multiplier technique and a unique continuation property. Then, we prove the global existence as well as the L-2-decay of solutions for the original model by passing to the limit and using a weak lower semicontinuity argument, respectively. The distinctive feature of the paper is the monotonicity approach, which makes the analysis independent from the commonly used Strichartz estimates and allows us to work without artificial smoothing terms inserted into the main equation. We in addition implement a precise and efficient algorithm for studying the exponential decay established in the first part of the paper numerically. Our simulations illustrate the efficacy of the proposed control design.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofCommunications in Partial Differential Equationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinite volume methoden_US
dc.subjectLocally distributed dampingen_US
dc.subjectMonotone operator theoryen_US
dc.subjectNonlinear Schrodinger equationen_US
dc.subjectStabilizationen_US
dc.subjectUnique continuationen_US
dc.titleExponential stability for the nonlinear Schrodinger equation with locally distributed dampingen_US
dc.typeArticleen_US
dc.authorid0000-0003-4240-5252en_US
dc.institutionauthorÖzsarı, Türker-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000532483800001en_US
dc.identifier.scopus2-s2.0-85084317857en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/03605302.2020.1760885-
dc.relation.doi10.1080/03605302.2020.1760885en_US
dc.coverage.doi10.1080/03605302.2020.1760885en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Exponential stability for the nonlinear.pdf2.67 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 9, 2024

Page view(s)

1,892
checked on Nov 18, 2024

Download(s)

48
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.