Please use this identifier to cite or link to this item:
Title: Irrigation of world agricultural lands: Evolution through the Millennia
Authors: Angelakis, Andreas N.
Zaccaria, Daniele
Krasilnikoff, Jens
Salgot, Miquel
Bazza, Mohamed
Roccaro, Paolo
Fereres, Elias
Baba, Alper
Keywords: Aztecs
Bronze Age
Byzantine times
Chinese dynasties
Hellenic civilizations
Irrigation practices
Medieval times
Ottoman times
Publisher: MDPI Multidisciplinary Digital Publishing Institute
Abstract: Many agricultural production areas worldwide are characterized by high variability of water supply conditions, or simply lack of water, creating a dependence on irrigation since Neolithic times. The aim of this paper is to provide an overview of the evolution of irrigation of agricultural lands worldwide, based on bibliographical research focusing on ancient water management techniques and ingenious irrigation practices and their associated land management practices. In ancient Egypt, regular flooding by the Nile River meant that early agriculture probably consisted of planting seeds in soils that had been recently covered and fertilized with floodwater and silt deposits. On the other hand, in arid and semi-arid regions farmers made use of perennial springs and seasonal runoff under circumstances altogether different from the river civilizations of Mesopotamia, Egypt, India, and early dynasties in China. We review irrigation practices in all major irrigation regions through the centuries. Emphasis is given to the Bronze Age civilizations (Minoans, Egyptians, and Indus valley), pre-Columbian, civilizations from the historic times (e.g., Chinese, Hellenic, and Roman), late-Columbians (e.g., Aztecs and Incas) and Byzantines, as well as to Ottomans and Arabs. The implications and impacts of irrigation techniques on modern management of water resources, as well as on irrigated agriculture, are also considered and discussed. Finally, some current major agricultural water management challenges are outlined, concluding that ancient practices could be adapted to cope with present challenges in irrigated agriculture for increasing productivity and sustainability. © 2020 by the authors.
ISSN: 2073-4441
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
water-12-01285-v2.pdf11.23 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Apr 5, 2024


checked on Mar 30, 2024

Page view(s)

checked on Apr 8, 2024


checked on Apr 8, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.