Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorGüldal, Veysel-
dc.date.accessioned2020-02-19T06:56:45Z
dc.date.available2020-02-19T06:56:45Z
dc.date.issued2006en_US
dc.identifier.citationTayfur, Gökmen, and Güldal, V. (2006). Artificial neural networks for estimating daily total suspended sediment in natural streams. Nordic Hydrology, 37(1), 69-79. doi:10.2166/nh.2006.0006en_US
dc.identifier.issn2224-7955
dc.identifier.issn2224-7955-
dc.identifier.issn0029-177-
dc.identifier.urihttps://doi.org/10.2166/nh.2006.0006
dc.identifier.urihttps://hdl.handle.net/11147/7702
dc.description.abstractEstimates of sediment loads in natural streams are required for a wide spectrum of water resources engineering problems from optimal reservoir design to water quality in lakes. Suspended sediment constitutes 75-95% of the total load. The nonlinear problem of suspended sediment estimation requires a nonlinear model. An artificial neural network (ANN) model has been developed to predict daily total suspended sediment (TSS) in rivers. The model is constructed as a three-layer feedforward network using the back-propagation algorithm as a training tool. The model predicts TSS rates using precipitation (P) data as input. For network training and testing 240 sets of data sets were used. The model successfully predicted daily TSS loads using the present and past 4 days precipitation data in the input vector with R2 = 0.91 and MAE = 34.22 mg/L. The performance of the model was also tested against the most recently developed non-linear black box model based upon two-dimensional unit sediment graph theory (2D-USGT). The comparison of results revealed that the ANN has a significantly better performance than the 2D-USGT. Investigation results revealed that the ANN model requires a period of more than 75 d of measured P-TSS data for training the model for satisfactory TSS estimation. The statistical parameter range (xmin - xmax) plays a major role for optimal partitioning of data into training and testing sets. Both sets should have comparable values for the range parameter.en_US
dc.language.isoenen_US
dc.publisherIWA Publishingen_US
dc.relation.ispartofNordic Hydrologyen_US
dc.relation.isversionof10.2166/nh.2005.031
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectBack-propagationen_US
dc.subjectParameter rangeen_US
dc.subjectSediment graph theoryen_US
dc.subjectSuspended sedimenten_US
dc.titleArtificial neural networks for estimating daily total suspended sediment in natural streamsen_US
dc.typeArticleen_US
dc.authorid0000-0001-9712-4031en_US
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume37en_US
dc.identifier.issue1en_US
dc.identifier.startpage69en_US
dc.identifier.endpage79en_US
dc.identifier.wosWOS:000235774600006en_US
dc.identifier.scopus2-s2.0-33644924333en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.2166/nh.2006.0006-
dc.relation.doi10.2166/nh.2006.0006en_US
dc.coverage.doi10.2166/nh.2006.0006en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
7702.pdfMakale (Article)186.06 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

73
checked on Apr 14, 2023

WEB OF SCIENCETM
Citations

67
checked on Oct 26, 2024

Page view(s)

9,076
checked on Nov 18, 2024

Download(s)

272
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.