Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7659
Title: Snowflake shaped high-conductivity inserts for heat transfer enhancement
Authors: Konan, Hasel Çiçek
Çetkin, Erdal
Keywords: Constructal theory
Snowflake
Heat transfer enhancement
Fins
Thermal resistance
Issue Date: Dec-2018
Publisher: Elsevier Ltd.
Source: Konan, H. Ç., and Çetkin, E. (2018). Snowflake shaped high-conductivity inserts for heat transfer enhancement. International Journal of Heat and Mass Transfer, 127, 473-482. doi:10.1016/j.ijheatmasstransfer.2018.08.063
Abstract: Here, we show numerically how thermal resistance in a two-dimensional domain with a point heat source can be reduced with embedded high-conductivity snowflake shaped pathways. The external shape of the domain is square, and its boundaries are heat sink. The geometry of the inserted pathways which corresponds to the minimum Tmax was uncovered with the consideration of Constructal Theory, i.e. the constructal design. In the first assembly, number of mother (big) fins was uncovered as the area fraction increases. The results of the first assembly indicate that the increase in number of mother fins does not increase heat transfer after a limit number for the fins. After uncovering the mother pathway geometry corresponding to the minimum Tmax, the daughter (small) fins inserted at the tip of them, i.e. second assembly. In the second assembly, the fin ratios, small fin location and angle were discovered when the area fraction is fixed. In addition, in the third assembly, larger daughter fins were attached to mother fins. The results of the second and third assemblies document what should be the geometric length scales and the number of daughter fins in order to minimize Tmax. The constructal design uncovered is similar to the shape of snowflakes. Therefore, the results also uncover snowflakes correspond to the designs with minimum thermal conductivity, i.e., not mimicking the nature but understanding it with physics.
URI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.063
https://hdl.handle.net/11147/7659
ISSN: 0017-9310
0017-9310
1879-2189
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
1-s2.0-S0017931018332186-main.pdfMakale (Article)1.95 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 27, 2021

WEB OF SCIENCETM
Citations

9
checked on Nov 27, 2021

Page view(s)

34
checked on Nov 29, 2021

Download(s)

28
checked on Nov 29, 2021

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.