Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/7478
Title: | A Learning-Based Demand Classification Service With Using Xgboost in Institutional Area | Other Titles: | Kurumsal Alanda Xgboost ile Öğrenme-tabanlı Talep Sınıflandırma Servisi | Authors: | Gürakın, Çağrı | Advisors: | Ayav, Tolga | Keywords: | XGBoost Natural language processing Supervised learning Machine learning Multinomial classification |
Publisher: | Izmir Institute of Technology | Source: | Gürakın, Ç., (2019). A learning-based demand classification service with using XGBoost in institutional area. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkey | Abstract: | This study, purposes to explain the development stages and methodology of data classification service that has a text-based adaptable programming interface. One of the successful classification algorithms, XGBoost, was preferred in the study. The dataset that is used in the study obtained by 'Digital Business Tracking Application' of a name anonymized company. The dataset is tested by using different classification algorithms and detailed performance evaluation was conducted. As a result, highest accuracy rate is obtained with 'Data Classification Service' which was developed by using XGBoost algorithm. Bu çalışma, metin-tabanlı, uyarlanabilir bir programlama arayüzüne sahip; veri sınıflandırma servisi geliştirme aşamalarını ve çalışmada takip edilen metodolojiyi konu alır. Çalışmada, başarılı sınıflandırma algoritmalarından biri olan XGBoost tercih edilmiştir. Çalışmada kullandığımız veri kümesi, bilgilerini anonimleştirdiğimiz bir şirketin; 'Dijital İş Takip Uygulaması' aracılığı ile elde edilmiştir. Veri seti farklı sınıflandırma algoritmaları ile de test edilmiş ve detaylı performans değerlendirmeleri yapılmıştır. Sonuç olarak, testlerimizde en yüksek doğruluk oranı, XGBoost algoritması ile geliştirdiğimiz veri sınıflandırma servisi ile elde edildi. |
Description: | Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2019 Includes bibliographical references (leaves: 48-49) Text in English; Abstract: Turkish and English |
URI: | https://hdl.handle.net/11147/7478 |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T001926.pdf | MasterThesis | 26.06 MB | Adobe PDF | View/Open |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.