Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekir, Selma-
dc.contributor.authorSezerer, Erhan-
dc.contributor.authorPolatbilek, Ozan-
dc.date.accessioned2019-09-02T13:21:00Z-
dc.date.available2019-09-02T13:21:00Z-
dc.date.issued2019en_US
dc.identifier.citationTekir, S., Sezerer, E., Polatbilek, O. (2019). Gender prediction from tweets: Improving neural representations with hand-crafted features. Yayın için başvurusu yapılmış metin.-
dc.identifier.urihttps://hdl.handle.net/11147/7251-
dc.identifier.urihttps://doi.org/10.48550/arXiv.1908.09919-
dc.description.abstractAuthor profiling is the characterization of an author through some key attributes such as gender, age, and language. In this paper, a RNN model with Attention (RNNwA) is proposed to predict the gender of a twitter user using their tweets. Both word level and tweet level attentions are utilized to learn ’where to look’. This model1 is improved by concatenating LSA-reduced n-gram features with the learned neural representation of a user. Both models are tested on three languages: English, Spanish, Arabic. The improved version of the proposed model (RNNwA + n-gram) achieves state-of-the-art performance on English and has competitive results on Spanish and Arabic.en_US
dc.language.isoenen_US
dc.publisherCornell University-
dc.relation.ispartofarXiv-
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectRNN Modelen_US
dc.subjectDatasetsen_US
dc.subjectModel architectureen_US
dc.subjectNeural network-based modelsen_US
dc.subjectNeural representationsen_US
dc.titleGender Prediction From Tweets: Improving Neural Representations With Hand-Crafted Featuresen_US
dc.typeArticleen_US
dc.authorid0000-0002-0488-9682en_US
dc.institutionauthorTekir, Selma-
dc.institutionauthorSezerer, Erhan-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.48550/arXiv.1908.09919-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Files in This Item:
File Description SizeFormat 
7251.pdfMakale Dosyası350.33 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

720
checked on Dec 23, 2024

Download(s)

82
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


This item is licensed under a Creative Commons License Creative Commons