Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6966
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Tanoğlu, Gamze | en_US |
dc.contributor.author | Hacısalihoğlu, Elif | - |
dc.date.accessioned | 2018-11-07T07:17:27Z | |
dc.date.available | 2018-11-07T07:17:27Z | |
dc.date.issued | 2018-06 | |
dc.identifier.citation | Hacısalihoğlu, E. (2018). Classical time splitting approaches and their error anlyses for nonlinear differential equations. Unpublished master's thesis, Izmir Institute of Technology, Izmir, Turkey | en_US |
dc.identifier.uri | http://hdl.handle.net/11147/6966 | |
dc.description | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2018 | en_US |
dc.description | Includes bibliographical references (leaves: 60-62) | en_US |
dc.description | Text in English; Abstract: Turkish and English | en_US |
dc.description.abstract | In this thesis, Lie - Trotter splitting, Strang - Marchuk splitting and symmetrically weighted sequential (SWS) splitting methods which are known as classical operator splitting methods are considered to find the numerical solution of the various ordinary differential equations (ODEs) and partial differential equations (PDEs). We also presented their error analyses in order to show advantages and disadvantages of these methods. Firstly, we considered simple linear and nonlinear ODE examples to motivate for the classical operator splitting methods. Then, two numerical examples which consist of a kinetic model of phage infection and the Newell - Whitehead - Segel (NWS) equation are studied. All these examples show that the operator splitting methods are a powerful technique with respect to the accuracy and robustness. | en_US |
dc.description.abstract | Bu tezde klasik operatör ayırma metodları olarak bilinen Lie - Trotter ayırma, Strang - Marchuk ayırma ve symmetrically weighted sequential (SWS) ayırma metodları çeşitli adi diferansiyel denklemlerin ve kısmi diferansiyel denklemlerin sayısal çözümünü bulmak için ele alınmıştır. Ayrıca bu yöntemlerin avantajlarını ve dezavantajlarını göstermek için hata analizlerini sunduk. İlk olarak, klasik operatör ayırma metodlarına motive olmak için basit lineer ve lineer olmayan ODE örneklerini düşündük. Daha sonra, bir faj enfeksiyonun kinetic bir modelinden ve Newell - Whitehead - Segel (NWS) denkleminden oluşan iki sayısal örnek üzerinde çalışılmıştır. Bütün bu örnekler operatör ayırma metodlarının doğruluk ve sağlamlık açısından güçlü bir teknik olduğunu göstermektedir. | en_US |
dc.format.extent | xi, 103 leaves | en_US |
dc.language.iso | en | en_US |
dc.publisher | Izmir Institute of Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Differential equations | en_US |
dc.subject | Operator splitting methods | en_US |
dc.subject | Nonlinear differential equation | en_US |
dc.subject | Lie - Trotter splitting | en_US |
dc.subject | Strang - Marchuk splitting | en_US |
dc.subject | Symmetrically weighted sequential | en_US |
dc.title | Classical time splitting approaches and their error anlyses for nonlinear differential equations | en_US |
dc.title.alternative | Lineer olmayan diferansiyel denklemler için klasik ayırma yaklaşımları ve hata analizleri | en_US |
dc.type | Master Thesis | en_US |
dc.institutionauthor | Hacısalihoğlu, Elif | - |
dc.department | Thesis (Master)--İzmir Institute of Technology, Mathematics | en_US |
dc.relation.publicationcategory | Tez | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Master Thesis | - |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T001768.pdf | MasterThesis | 705.37 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
224
checked on Nov 18, 2024
Download(s)
244
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.