Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6938
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Tuğlular, Tuğkan | en_US |
dc.contributor.advisor | Tekir, Selma | en_US |
dc.contributor.author | Keklik, Onur | - |
dc.date.accessioned | 2018-10-31T11:27:11Z | |
dc.date.available | 2018-10-31T11:27:11Z | |
dc.date.issued | 2018-07 | |
dc.identifier.citation | Keklik, O. (2018). Automatic question generation using natural language processing techniques. Unpublished master's thesis, Izmir Institute of Technology, Izmir, Turkey | en_US |
dc.identifier.uri | http://hdl.handle.net/11147/6938 | |
dc.description | Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2018 | en_US |
dc.description | Includes bibliographical references (leaves: 37-41) | en_US |
dc.description | Text in English; Abstract: Turkish and English | en_US |
dc.description.abstract | This thesis proposes a new rule based approach to automatic question generation. The proposed approach focuses on analysis of both syntactic and semantic structure of a sentence. The design and implementation of the proposed approach are also explained in detail. Although the primary objective of the designed system is question generation from sentences, automatic evaluation results shows that, it also achieves great performance on reading comprehension datasets, which focus on question generation from paragraphs. With respect to human evaluations, the designed system significantly outperforms all other systems and generated the most natural (human-like) questions. | en_US |
dc.description.abstract | Bu tez otomatik soru üretimi için yeni bir kural tabanlı yaklaşım önermektedir. Önerilen yaklaşım, bir cümlenin hem sözdizimsel hem de semantik yapısının analizine odaklanmaktadır. Ayrıca, önerilen yaklaşımın tasarımı ve uygulanması ayrıntılı olarak açıklanmıştır. Tasarlanan sistemin temel amacı cümlelerden soru üretmek olmasına rağmen, otomatik değerlendirme sonuları, sistemin anlama becerisi gerektiren paragraflar üzerinde de büyük bir performans sergilediğini gösterdi. İnsan değerlendirmelerine gelince, tasarlanan sistem diğer tüm sistemlerden önemli ölçüde daha iyi bir performans gösterdi ve en doğal (insan benzeri) soruları üretti. | en_US |
dc.format.extent | xi, 41 leaves | en_US |
dc.language.iso | en | en_US |
dc.publisher | Izmir Institute of Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Question generation | en_US |
dc.subject | Named Entity Recognition | en_US |
dc.subject | Question answering | en_US |
dc.subject | Automatic evaluation | en_US |
dc.subject | Semantic role labeling | en_US |
dc.title | Automatic question generation using natural language processing techniques | en_US |
dc.title.alternative | Doğal dil işleme tekniklerini kullanarak otomatik soru üretme | en_US |
dc.type | Master Thesis | en_US |
dc.institutionauthor | Keklik, Onur | - |
dc.department | Thesis (Master)--İzmir Institute of Technology, Computer Engineering | en_US |
dc.relation.publicationcategory | Tez | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Master Thesis | - |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T001801.pdf | MasterThesis | 558.7 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
424
checked on Nov 18, 2024
Download(s)
1,282
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.