Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6805
Title: Graphene-Based Integrated Electronic, Photonic and Spintronic Circuit
Authors: Potasz, P.
Güçlü, Alev Devrim
Özfidan, Işıl
Korkusinski, Marek
Hawrylak, Pawel
Keywords: Electronic nanodevices
Graphene nanostructures
Nanostructured materials
Photonic integration technology
Publisher: SPIE
Source: Potasz, P., Güçlü, A. D., Özfidan, I., Korkusinski, M. and Hawrylak, P. (2013, 29 April-3 May). Graphene-based integrated electronic, photonic and spintronic circuit. Proceedings of SPIE 8725, Paper presented at the Micro- and Nanotechnology Sensors, Systems, and Applications V Conference. doi:10.1117/12.2016607
Abstract: To create carbon-based nanoscale integrated electronic, photonic, and spintronic circuit one must demonstrate the three functionalities in a single material, graphene quantum dots (GQDs), by engineering lateral size, shape, edges, number of layers and carrier density. We show theoretically that spatial confinement in GQDs opens an energy gap tunable from UV to THz, making GQDs equivalent to semiconductor nanoparticles. When connected to leads, GQDs act as single-electron transistors. The energy gap and absorption spectrum can be tuned from UV to THz by size and edge engineering and by external electric and magnetic fields. The sublattice engineering in, e.g., triangular graphene quantum dots (TGQDs) with zigzag edges generates a finite magnetic moment. The magnetic moment can be controlled by charging, electrical field, and photons. Addition of a single electron to the charge-neutral system destroys the ferromagnetic order, which can be restored by absorption of a photon. This allows for an efficient spin-photon conversion. These results show that graphene quantum dots have potential to fulfill the three functionalities: electronic, photonic, and spintronic, realized with different materials in current integrated circuits, as well as offer new functionalities unique to graphene.
URI: http://doi.org/10.1117/12.2016607
http://hdl.handle.net/11147/6805
ISSN: 0277-786X
0277-786X
Appears in Collections:Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
6805.pdfConference Paper387.9 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.