Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6801
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeomete, Egemen-
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorAktaş, Engin-
dc.date.accessioned2018-02-19T07:33:44Z-
dc.date.available2018-02-19T07:33:44Z-
dc.date.issued2012-
dc.identifier.citationTeomete, E., Tayfur, G., and Aktaş, E. (2012). Estimation of mechanical properties of limestone using regression analyses and ANN. Cement, Wapno, Beton, (6), 373-389.en_US
dc.identifier.issn1425-8129-
dc.identifier.urihttp://hdl.handle.net/11147/6801-
dc.description.abstractEstimation of mechanical properties of rocks is important for researchers and field engineers working in cement and concrete industry. Limestone is used in cement production. In this study, Schmidt hammer, ultrasonic pulse velocity, porosity, uniaxial compression and indirect tension tests were conducted on limestone obtained from a historical structure. Regression analyses were used to develop models relating mechanical properties of limestone. Artificial Neural Network (ANN) was performed to determine the mechanical properties. The performance of regression models and ANN were compared by existing models in the literature. The results showed that the regression models and ANN yield satisfactory performance with minimum error. The regression models between tensile strength and wave velocity, tensile strength and porosity, wave velocity and porosity have been developed for the first time in literature. The ANN is used for the first time to estimate the mechanical properties of limestone. The use of separate training and testing sets in the regression analyses of mechanical properties of limestone is conducted for the first time. The models developed in this study can be used by researchers and field engineers to relate the mechanical properties of limestone.en_US
dc.description.sponsorshipThe Scientific and Technical Research Council of Turkey (TUBITAK) ICTAG 1-591en_US
dc.language.isoenen_US
dc.publisherFoundation Cement, Lime, Concreteen_US
dc.relation.ispartofCement, Wapno, Betonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectRegression analysisen_US
dc.subjectLimestoneen_US
dc.subjectConcretesen_US
dc.titleEstimation of mechanical properties of limestone using regression analyses and ANNen_US
dc.title.alternativeEstymacja mechanicznych wlasciwosci wapienia przy zastosowaniu analizy regresji i sztucznych sieci neuronowychen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.authoridTR115446en_US
dc.institutionauthorTayfur, Gökmen-
dc.institutionauthorAktaş, Engin-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.issue6en_US
dc.identifier.startpage373en_US
dc.identifier.endpage389en_US
dc.identifier.wosWOS:000313756500003en_US
dc.identifier.scopus2-s2.0-84874295405en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6801.pdfMakale9.15 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

394
checked on Nov 18, 2024

Download(s)

130
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.