Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIvanyshyn Yaman, Olha-
dc.contributor.authorKress, Rainer-
dc.date.accessioned2018-01-30T12:52:23Z-
dc.date.available2018-01-30T12:52:23Z-
dc.date.issued2017-12-
dc.identifier.citationIvanyshyn Yaman, O., and Kress, R. (2017). Nonlinear integral equations for Bernoulli's free boundary value problem in three dimensions. Computers and Mathematics with Applications, 74(11), 2784-2791. doi:10.1016/j.camwa.2017.06.011en_US
dc.identifier.issn0898-1221-
dc.identifier.urihttp://doi.org/10.1016/j.camwa.2017.06.011-
dc.identifier.urihttp://hdl.handle.net/11147/6767-
dc.description.abstractIn this paper we present a numerical solution method for the Bernoulli free boundary value problem for the Laplace equation in three dimensions. We extend a nonlinear integral equation approach for the free boundary reconstruction (Kress, 2016) from the two-dimensional to the three-dimensional case. The idea of the method consists in reformulating Bernoulli's problem as a system of boundary integral equations which are nonlinear with respect to the unknown shape of the free boundary and linear with respect to the boundary values. The system is linearized simultaneously with respect to both unknowns, i.e., it is solved by Newton iterations. In each iteration step the linearized system is solved numerically by a spectrally accurate method. After expressing the Fréchet derivatives as a linear combination of single- and double-layer potentials we obtain a local convergence result on the Newton iterations and illustrate the feasibility of the method by numerical examples.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofComputers and Mathematics with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBoundary integral equationen_US
dc.subjectNonlinear equationsen_US
dc.subjectFree boundaryen_US
dc.subjectLaplace equationen_US
dc.titleNonlinear integral equations for Bernoulli's free boundary value problem in three dimensionsen_US
dc.typeArticleen_US
dc.authoridTR253431en_US
dc.institutionauthorIvanyshyn Yaman, Olha-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume74en_US
dc.identifier.issue11en_US
dc.identifier.startpage2784en_US
dc.identifier.endpage2791en_US
dc.identifier.wosWOS:000418980800012en_US
dc.identifier.scopus2-s2.0-85021855562en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.camwa.2017.06.011-
dc.relation.doi10.1016/j.camwa.2017.06.011en_US
dc.coverage.doi10.1016/j.camwa.2017.06.011en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6767.pdfMakale2.09 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Sep 13, 2024

WEB OF SCIENCETM
Citations

6
checked on Aug 24, 2024

Page view(s)

210
checked on Sep 16, 2024

Download(s)

184
checked on Sep 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.