Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6707
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakuş, Oktay-
dc.contributor.authorKuruoğlu, Ercan Engin-
dc.contributor.authorAltınkaya, Mustafa Aziz-
dc.date.accessioned2018-01-18T08:06:03Z
dc.date.available2018-01-18T08:06:03Z
dc.date.issued2017-09
dc.identifier.citationKarakuş, O., Kuruoğlu, E. E., and Altınkaya, M. A. (2017). One-day ahead wind speed/power prediction based on polynomial autoregressive model. IET Renewable Power Generation, 11(11), 1430-1439. doi:10.1049/iet-rpg.2016.0972en_US
dc.identifier.issn1752-1416
dc.identifier.issn1752-1416-
dc.identifier.urihttp://doi.org/10.1049/iet-rpg.2016.0972
dc.identifier.urihttp://hdl.handle.net/11147/6707
dc.description.abstractWind has been one of the popular renewable energy generation methods in the last decades. Foreknowledge of power to be generated from wind is crucial especially for planning and storing the power. It is evident in various experimental data that wind speed time series has non-linear characteristics. It has been reported in the literature that nonlinear prediction methods such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) perform better than linear autoregressive (AR) and AR moving average models. Polynomial AR (PAR) models, despite being non-linear, are simpler to implement when compared with other non-linear AR models due to their linear-in-the-parameters property. In this study, a PAR model is used for one-day ahead wind speed prediction by using the past hourly average wind speed measurements of Ceşme and Bandon and performance comparison studies between PAR and ANN-ANFIS models are performed. In addition, wind power data which was published for Global Energy Forecasting Competition 2012 has been used to make power predictions. Despite having lower number of model parameters, PAR models outperform all other models for both of the locations in speed predictions as well as in power predictions when the prediction horizon is longer than 12 h.en_US
dc.language.isoenen_US
dc.publisherInstitution of Engineering and Technologyen_US
dc.relation.ispartofIET Renewable Power Generationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWind poweren_US
dc.subjectFuzzy neural networksen_US
dc.subjectRenewable energy resourcesen_US
dc.subjectWind speeden_US
dc.subjectAuto regressive modelsen_US
dc.titleOne-day ahead wind speed/power prediction based on polynomial autoregressive modelen_US
dc.typeArticleen_US
dc.authoridTR179468en_US
dc.authoridTR114046en_US
dc.institutionauthorKarakuş, Oktay-
dc.institutionauthorAltınkaya, Mustafa Aziz-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume11en_US
dc.identifier.issue11en_US
dc.identifier.startpage1430en_US
dc.identifier.endpage1439en_US
dc.identifier.wosWOS:000411690700010en_US
dc.identifier.scopus2-s2.0-85030127897en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1049/iet-rpg.2016.0972-
dc.relation.doi10.1049/iet-rpg.2016.0972en_US
dc.coverage.doi10.1049/iet-rpg.2016.0972en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityttpTop10%en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6707.pdfMakale3.84 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

111
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

94
checked on Nov 9, 2024

Page view(s)

700
checked on Nov 18, 2024

Download(s)

250
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.