Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6656
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakuş, Oktay-
dc.contributor.authorKuruoğlu, Ercan Engin-
dc.contributor.authorAltınkaya, Mustafa Aziz-
dc.date.accessioned2018-01-08T11:03:22Z
dc.date.available2018-01-08T11:03:22Z
dc.date.issued2017-12
dc.identifier.citationKarakuş, O., Kuruoğlu, E. E., and Altınkaya, M. A. (2017). Bayesian Volterra system identification using reversible jump MCMC algorithm. Signal Processing, 141, 125-136. doi:10.1016/j.sigpro.2017.05.031en_US
dc.identifier.issn0165-1684
dc.identifier.issn0165-1684-
dc.identifier.urihttp://doi.org/10.1016/j.sigpro.2017.05.031
dc.identifier.urihttp://hdl.handle.net/11147/6656
dc.description.abstractVolterra systems have had significant success in modelling nonlinear systems in various real-world applications. However, it is generally assumed that the nonlinearity degree of the system is known beforehand. In this paper, we contribute to the literature on Volterra system identification (VSI) with a numerical Bayesian approach which identifies model coefficients and the nonlinearity degree concurrently. Although this numerical Bayesian method, namely reversible jump Markov chain Monte Carlo (RJMCMC) algorithm has been used with success in various model selection problems, our use is in a novel context in the sense that both memory size and nonlinearity degree are estimated. The aforementioned study ensures an anomalous approach to RJMCMC and provides a new understanding on its flexible use which enables trans-structural transitions between different classes of models in addition to transdimensional transitions for which it is classically used. We study the performance of the method on synthetically generated data including OFDM communications over a nonlinear channel.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofSignal Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectChannel estimationen_US
dc.subjectNonlinearity degree estimationen_US
dc.subjectReversible jump MCMCen_US
dc.subjectVolterra system identificationen_US
dc.subjectBayesian Networksen_US
dc.titleBayesian Volterra system identification using reversible jump MCMC algorithmen_US
dc.typeArticleen_US
dc.authoridTR179468en_US
dc.authoridTR114046en_US
dc.institutionauthorKarakuş, Oktay-
dc.institutionauthorAltınkaya, Mustafa Aziz-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume141en_US
dc.identifier.startpage125en_US
dc.identifier.endpage136en_US
dc.identifier.wosWOS:000406987500011en_US
dc.identifier.scopus2-s2.0-85020312846en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.sigpro.2017.05.031-
dc.relation.doi10.1016/j.sigpro.2017.05.031en_US
dc.coverage.doi10.1016/j.sigpro.2017.05.031en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6656.pdfMakale1.5 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Sep 13, 2024

WEB OF SCIENCETM
Citations

10
checked on Aug 24, 2024

Page view(s)

718
checked on Sep 2, 2024

Download(s)

380
checked on Sep 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.