Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6434
Title: Deneysel Mod Ayrıştırması Uygulanmış Yazma Hareket Bilgisi Kullanılarak El Yazısı Karakter Tanıma
Other Titles: Handwritten Character Recognition Using Empirical Mode Decomposition Applied Writing Movements
Authors: Tuncer, Esra
Olcay, Bilal Orkan
Unlu, Mehmet Zubeyir
Keywords: 3-Axis Accelerometer
Emprical Mode Decomposition
Dynamic Time Warping
Handwritten Character Recognition
Publisher: IEEE
Source: Tunçer, E., Olcay, B. O., and Ünlü, M. Z. (2017, May 15-18). Deneysel mod ayrıştırması uygulanmış yazma hareket bilgisi kullanılarak el yazısı karakter tanıma. Paper presented at the 25th Signal Processing and Communications Applications Conference. doi:10.1109/SIU.2017.7960527
Series/Report no.: Signal Processing and Communications Applications Conference
Abstract: In this paper, handwritten character recognition by using characters' writing movements is investigated. To obtain the information about writing movements a 3-axis accelerometer is used. Just like most of other sensors, 3-axis accelerometers give the actual movement signal as well as noise. Before the recognition step, all of the signals need to be preprocessed and the noisy parts need to be removed. So, Empirical Mode Decomposition (EMD) and normalization preprocessing steps are applied to the signals. Finally, the signals in the dataset are compared with Dynamic Time Warping for classification and accurate classification rate of 91.92% is obtained.
URI: http://doi.org/10.1109/SIU.2017.7960527
ISBN: 9781509064946
ISSN: 2165-0608
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
6434.pdfConference Paper351.62 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on May 16, 2025

Page view(s)

498
checked on Jul 28, 2025

Download(s)

438
checked on Jul 28, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.