Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6176
Title: Strongly noncosingular modules
Authors: Alagöz, Yusuf
Durğun, Yılmaz
Keywords: R-modules
Rings
Coatomic modules
Coclosed submodules
Modules (Algebra)
Publisher: Iranian Mathematical Society
Source: Alagöz, Y., and Durğun, Y. (2016). Strongly noncosingular modules. Bulletin of the Iranian Mathematical Society, 42(4), 999-1013.
Abstract: An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3) absolutely coneat modules are strongly noncosingular if and only if R is a right max ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules.
URI: http://hdl.handle.net/11147/6176
ISSN: 1735-8515
1017-060X
1018-6301
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
6176.pdfMakale138.87 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Oct 26, 2024

Page view(s)

144
checked on Nov 25, 2024

Download(s)

88
checked on Nov 25, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.