Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6176
Title: | Strongly Noncosingular Modules | Authors: | Alagöz, Yusuf Durğun, Yılmaz |
Keywords: | R-modules Rings Coatomic modules Coclosed submodules Modules (Algebra) |
Publisher: | Iranian Mathematical Society | Source: | Alagöz, Y., and Durğun, Y. (2016). Strongly noncosingular modules. Bulletin of the Iranian Mathematical Society, 42(4), 999-1013. | Abstract: | An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3) absolutely coneat modules are strongly noncosingular if and only if R is a right max ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules. | URI: | http://hdl.handle.net/11147/6176 | ISSN: | 1735-8515 1017-060X 1018-6301 |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
1
checked on Jan 31, 2025
WEB OF SCIENCETM
Citations
1
checked on Feb 1, 2025
Page view(s)
162
checked on Feb 3, 2025
Download(s)
102
checked on Feb 3, 2025
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.