Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6020
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Köktürk Güzel, Başak Esin | - |
dc.contributor.author | Karaçalı, Bilge | - |
dc.date.accessioned | 2017-07-25T13:26:51Z | - |
dc.date.available | 2017-07-25T13:26:51Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Köktürk Güzel, B. E., and Karaçalı, B. (2016, September). Fisher's linear discriminant analysis based prediction using transient features of Seismic Events in Coal Mines. In M. Ganzha, L. Maciaszek, M. Paprzycki (Eds.), Paper presented at the Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, Gdansk,, Poland (pp. 231-234). New York City : Institute of Electrical and Electronics Engineers. | en_US |
dc.identifier.isbn | 9788360810903 | - |
dc.identifier.uri | http://doi.org/10.15439/2016F116 | - |
dc.identifier.uri | http://hdl.handle.net/11147/6020 | - |
dc.description | 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016; Gdansk; Poland; 11 September 2016 through 14 September 2016 | en_US |
dc.description.abstract | Identification of seismic activity levels in coal mines is important to avoid accidents such as rockburst. Creating an early warning system that can save lives requires an automated way of predicting. This study proposes a prediction algorithm for the AAIA'16 Data Mining Challenge: Predicting Dangerous Seismic Events in Active Coal Mines that is based on transient activity features along with average indicators evaluated by a Fisher's linear discriminant analysis. Performance evaluation experiments on the training datasets revealed an accuracy level of around 0.9438 while the performance on the test dataset was at a level of 0.9297. These results suggest that the proposed approach achieves high accuracy in predicting danger seismic events while maintaining low complexity. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Federated Conference on Computer Science and Information Systems, FedCSIS 2016 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Coal mines | en_US |
dc.subject | Data mining | en_US |
dc.subject | Discriminant analysis | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Information systems | en_US |
dc.subject | Seismic activity | en_US |
dc.title | Fisher's linear discriminant analysis based prediction using transient features of seismic events in coal mines | en_US |
dc.type | Conference Object | en_US |
dc.authorid | TR116500 | en_US |
dc.authorid | TR11527 | en_US |
dc.institutionauthor | Köktürk Güzel, Başak Esin | - |
dc.institutionauthor | Karaçalı, Bilge | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 8 | en_US |
dc.identifier.startpage | 231 | en_US |
dc.identifier.endpage | 234 | en_US |
dc.identifier.wos | WOS:000392436600035 | en_US |
dc.identifier.scopus | 2-s2.0-85007248686 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.15439/2016F116 | - |
dc.relation.doi | 10.15439/2016F116 | en_US |
dc.coverage.doi | 10.15439/2016F116 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 9, 2024
Page view(s)
220
checked on Nov 18, 2024
Download(s)
176
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.