Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6018
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karakuş, Oktay | - |
dc.contributor.author | Kuruoğlu, Ercan Engin | - |
dc.contributor.author | Altınkaya, Mustafa Aziz | - |
dc.date.accessioned | 2017-07-25T12:06:09Z | - |
dc.date.available | 2017-07-25T12:06:09Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Karakuş, O., Kuruoğlu, E. E., and Altınkaya, M. A. (2016, August 28 - September 2). Bayesian estimation of polynomial moving average models with unknown degree of nonlinearity. Paper presented at the 24th European Signal Processing Conference, EUSIPCO 2016. doi:10.1109/EUSIPCO.2016.7760507 | en_US |
dc.identifier.isbn | 9780992862657 | en_US |
dc.identifier.issn | 2219-5491 | - |
dc.identifier.uri | http://doi.org/10.1109/EUSIPCO.2016.7760507 | - |
dc.identifier.uri | http://hdl.handle.net/11147/6018 | - |
dc.description | 24th European Signal Processing Conference, EUSIPCO 2016; Hotel Hilton BudapestBudapest; Hungary; 28 August 2016 through 2 September 2016 | en_US |
dc.description.abstract | Various real world phenomena such as optical communication channels, power amplifiers and movement of sea vessels exhibit nonlinear characteristics. The nonlinearity degree of such systems is assumed to be known as a general intention. In this paper, we contribute to the literature with a Bayesian estimation method based on reversible jump Markov chain Monte Carlo (RJMCMC) for polynomial moving average (PMA) models. Our use of RJMCMC is novel and unique in the way of estimating both model memory and the nonlinearity degree. This offers greater flexibility to characterize the models which reflect different nonlinear characters of the measured data. In this study, we aim to demonstrate the potentials of RJMCMC in the identification for PMA models due to its potential of exploring nonlinear spaces of different degrees by sampling. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 24th European Signal Processing Conference, EUSIPCO 2016 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonlinearity degree estimation | en_US |
dc.subject | Polynomials | en_US |
dc.subject | Reversible jump MCMC | en_US |
dc.subject | Nonlinear optics | en_US |
dc.subject | Markov processes | en_US |
dc.subject | Monte Carlo method | en_US |
dc.title | Bayesian estimation of polynomial moving average models with unknown degree of nonlinearity | en_US |
dc.type | Conference Object | en_US |
dc.authorid | TR179468 | en_US |
dc.authorid | TR114046 | en_US |
dc.institutionauthor | Karakuş, Oktay | - |
dc.institutionauthor | Altınkaya, Mustafa Aziz | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 2016 | en_US |
dc.identifier.startpage | 1543 | en_US |
dc.identifier.endpage | 1547 | en_US |
dc.identifier.scopus | 2-s2.0-85006043072 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/EUSIPCO.2016.7760507 | - |
dc.relation.doi | 10.1109/EUSIPCO.2016.7760507 | en_US |
dc.coverage.doi | 10.1109/EUSIPCO.2016.7760507 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 15, 2024
Page view(s)
244
checked on Nov 18, 2024
Download(s)
272
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.