Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5959
Title: | Hexagonal Aln: Dimensional-Crossover Band-Gap Transition |
Authors: | Bacaksız, Cihan Şahin, Hasan Özaydın, H. Duygu Horzum, Şeyda Senger, Ramazan Tugrul Peeters, François M. |
Keywords: | Graphene Hexagonal AlN Phonon spectrum Semiconductor surfaces Adsorbate structure |
Publisher: | American Physical Society |
Source: | Bacaksız, C., Şahin, H., Özaydın, H.D., Horzum, Ş., Senger, R.T., and Peeters, F.M. (2015). Hexagonal AlN: Dimensional-crossover-driven band-gap transition. Physical Review B - Condensed Matter and Materials Physics, 91(8). doi:10.1103/PhysRevB.91.085430 |
Abstract: | Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas, Appl. Phys. Lett. 103, 251605 (2013)APPLAB0003-695110.1063/1.4851239], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm-1 and an Eg mode at 703 cm-1, which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA′-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N=1-9, we predict that thicker structures (N≥10) have a direct band gap at the Γ point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides. |
URI: | https://doi.org/10.1103/PhysRevB.91.085430 http://hdl.handle.net/11147/5959 |
ISSN: | 1098-0121 1550-235X 1098-0121 |
Appears in Collections: | Physics / Fizik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.