Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5945
Title: Single layer PbI2: Hydrogenation-driven reconstructions
Authors: Bacaksız, Cihan
Şahin, Hasan
Keywords: Hydrogenation
Chemical bonds
Density functional theory
Energy gap
Gas adsorption
Publisher: Royal Society of Chemistry
Source: Bacaksız, C., and Şahin, H. (2016). Single layer PbI2: Hydrogenation-driven reconstructions. RSC Advances, 6(92), 89708-89714. doi:10.1039/c6ra15020a
Abstract: By performing density functional theory-based calculations, we investigate how a hydrogen atom interacts with the surfaces of monolayer PbI2 and how one- and two-side hydrogenation modifies its structural, electronic, and magnetic properties. Firstly, it was shown that the T-phase of single layer PbI2 is energetically more favorable than the H-phase. It is found that hydrogenation of its surfaces is possible through the adsorption of hydrogen on the iodine sites. While H atoms do not form a particular bonding-type at low concentration, by increasing the number of hydrogenated I-sites well-ordered hydrogen patterns are formed on the PbI2 matrix. In addition, we found that for one-side hydrogenation, the structure forms a (2 × 1) Jahn-Teller type distorted structure and the bandgap is dramatically reduced compared to hydrogen-free single layer PbI2. Moreover, in the case of full hydrogenation, the structure also possesses another (2 × 2) reconstruction with a reduction in the bandgap. The easily tunable electronic and structural properties of single layer PbI2 controlled by hydrogenation reveal its potential uses in nanoscale semiconducting device applications.
URI: http://doi.org/10.1039/c6ra15020a
http://hdl.handle.net/11147/5945
ISSN: 2046-2069
2046-2069
Appears in Collections:Photonics / Fotonik
Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
5945.pdfMakale2.37 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.