Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5761
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Erzin, Yusuf | - |
dc.contributor.author | Ecemiş, Nurhan | - |
dc.date.accessioned | 2017-06-14T07:34:56Z | - |
dc.date.available | 2017-06-14T07:34:56Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Erzin, Y., and Ecemiş, N. (2014). The use of neural networks for CPT-based liquefaction screening. Bulletin of Engineering Geology and the Environment, 74(1), 103-116. doi:10.1007/s10064-014-0606-8 | en_US |
dc.identifier.issn | 1435-9529 | - |
dc.identifier.uri | https://doi.org/10.1007/s10064-014-0606-8 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5761 | - |
dc.description.abstract | This study deals with development of two different artificial neural network (ANN) models: one for predicting cone penetration resistance and the other for predicting liquefaction resistance. For this purpose, cone penetration numerical simulations and cyclic triaxial tests conducted on Ottawa sand–silt mixes at different fines content were used. Results obtained from ANN models were compared with simulation and experimental results and found close to them. In addition, the performance indices such as coefficient of determination, root mean square error, mean absolute error, and variance were used to check the prediction capacity of the ANN models developed. Both ANN models have shown a high prediction performance based on the performance indices. It has been demonstrated that the ANN models developed in this study can be employed for predicting cone penetration and liquefaction resistances of sand–silt mixes quite efficiently. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Bulletin of Engineering Geology and the Environment | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Cone penetration resistance | en_US |
dc.subject | Liquefaction resistance | en_US |
dc.subject | Ottowa sand | en_US |
dc.title | The Use of Neural Networks for Cpt-Based Liquefaction Screening | en_US |
dc.type | Article | en_US |
dc.authorid | TR115346 | en_US |
dc.institutionauthor | Ecemiş, Nurhan | - |
dc.department | İzmir Institute of Technology. Civil Engineering | en_US |
dc.identifier.volume | 74 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 103 | en_US |
dc.identifier.endpage | 116 | en_US |
dc.identifier.wos | WOS:000348300600008 | en_US |
dc.identifier.scopus | 2-s2.0-84922000533 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s10064-014-0606-8 | - |
dc.relation.doi | 10.1007/s10064-014-0606-8 | en_US |
dc.coverage.doi | 10.1007/s10064-014-0606-8 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
crisitem.author.dept | 03.03. Department of Civil Engineering | - |
Appears in Collections: | Civil Engineering / İnşaat Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
35
checked on Dec 6, 2024
WEB OF SCIENCETM
Citations
33
checked on Oct 26, 2024
Page view(s)
350
checked on Dec 9, 2024
Download(s)
548
checked on Dec 9, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.