Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5718
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorŞahin, Serapen_US
dc.contributor.authorÇetinkal, Yağız-
dc.date.accessioned2017-06-07T13:34:58Z-
dc.date.available2017-06-07T13:34:58Z-
dc.date.issued2016-10-
dc.identifier.citationÇetinkal, Y. (2016). Matching of social media accounts by using public information. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkeyen_US
dc.identifier.urihttp://hdl.handle.net/11147/5718-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2016en_US
dc.descriptionFull text release delayed at author's request until 2018.11.15en_US
dc.descriptionIncludes bibliographical references (leaves: 49-51)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.descriptionx, 58 leavesen_US
dc.description.abstractProtection of private information on social networks (SNs) has become a serious and important topic since social network sites became popular and widely adopted worldwide. Usually people want their personal information to be known only by a small group of people including close friends and families. But sometimes they willingly accept to give some particular information about themselves to individuals which are neither a friend nor an acquaintance. Each SN has different purposes and people subscribe many of them. However, public information available on these sites reveals many aspects of user’s identity. In this work, it is shown that public information can be used to detect the different accounts of the same individual. This study is performed on two popular social media sites: Twitter and Facebook. Public attributes of the profiles such as real name, user name and status updates (tweets and posts) are used for comparing profiles on two SNs. Different data mining algorithms are compared for matching profiles. Also relationship between text similarity and total term counts of status updates is analyzed. Results show that simple features like real names, user names and status updates have high similarity between the accounts of the same users and these features can be used to detect profiles of the same user on different SNs. Also the more status updates a user posts on Facebook the more he will likely be detected by the matching schema. Thus, public information can be exploited to pose a threat to the privacy of the people on the Internet.en_US
dc.description.abstractSosyal ağlar dünyada popüler ve yaygın olduğundan beri gizliliğin korunması ciddi ve önemli bir konu olmuştur. Genellikle insanlar kişisel bilgilerini sadece yakın arkadaşların ve ailelerinin dâhil olduğu küçük bir grup ile paylaşır. Fakat bazen kendileri hakkındaki bazı bilgileri isteyerek yabancılarla da paylaşmak isteyebilirler. İnsanlar farklı kullanım amaçları olan birçok sosyal ağa kaydolmaktadır. Fakat sosyal ağlardaki herkese açık olan bu bilgiler kullanıcıların kimliğinin birçok noktasını açığa çıkarmaktadır. Bu çalışmada, herkese açık bu bilgiler kullanılarak aynı kişinin farklı sosyal ağ hesaplarının keşfedilebilir olduğu gösterilmektedir. Çalışma en popüler sosyal ağlardan Twitter ve Facebook üzerinde gerçekleştirildi. Hesaplardaki gerçek isim, kullanıcı ismi ve durum güncellemesi (tweetler ve yazılar) gibi herkese açık bilgiler, iki sosyal ağ üstündeki hesapların karşılaştırılması için kullanıldı. Hesapları eşleştirmek için farklı veri madenciliği algoritmaları karşılaştırıldı. Ayrıca hesaplar arasındaki yazı benzerliği ile yazılardaki terim sayısı arasındaki ilişki incelendi. Sonuçlar, aynı kişinin farklı hesapları arasında gerçek isim, kullanıcı ismi ve durum güncellemesi gibi basit niteliklerin yüksek oranda benzerlik gösterdiğini ve bu niteliklerin aynı kişilerin farklı sosyal ağlardaki hesaplarını tespit etmede kullanılabileceğini göstermektedir. Ayrıca kullanıcılar Facebook’da ne kadar çok yazarsa, Twitter hesabı ile eşleşme olasılığı o kadar artmaktadır. Sonuç olarak herkes tarafından erişilebilen bu bilgiler internetteki kullanıcıların gizliliğine tehdit oluşturacak şekilde istismar edilebilir.en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSocial networksen_US
dc.subjectSocial mediaen_US
dc.subjectTwitteren_US
dc.subjectFacebooken_US
dc.subjectPublic informationen_US
dc.subjectInterneten_US
dc.titleMatching of social media accounts by using public informationen_US
dc.title.alternativeSosyal medya hesaplarının herkese açık bilgilerin kullanılarak eşleştirilmesien_US
dc.typeMaster Thesisen_US
dc.institutionauthorÇetinkal, Yağız-
dc.departmentThesis (Master)--İzmir Institute of Technology, Computer Engineeringen_US
dc.request.emailyagizcetinkal@hotmail.com-
dc.request.fullnameYağız Çetinkal-
dc.relation.publicationcategoryTezen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T001575.pdfMasterThesis1.41 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

204
checked on Nov 18, 2024

Download(s)

132
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.