Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuştepeli, Alp-
dc.date.accessioned2017-05-31T13:46:22Z-
dc.date.available2017-05-31T13:46:22Z-
dc.date.issued2015-08-
dc.identifier.citationKuştepeli, A. (2015). Revised distributional forms of the Laplacian and Poisson's equation, their implications, and all related generalizations. Electromagnetics, 35(6), 371-385. doi:10.1080/02726343.2015.1053349en_US
dc.identifier.issn0272-6343-
dc.identifier.urihttp://doi.org/10.1080/02726343.2015.1053349-
dc.identifier.urihttp://hdl.handle.net/11147/5664-
dc.description.abstractThe theory of distributions of L. Schwartz is a very useful and convenient way for the analysis of physical problems since physical distributions, especially charge distributions yielding the discontinuity of the potential and boundary conditions, can be correctly described in terms of mathematical distributions. To obtain the charge distributions, the distributional form of the Laplacian is applied to the Poisson's equation; therefore, for the correct representations and interpretations, the distributional forms and their proper applications are very important. In this article, it is shown that the distributional form of the Laplacian has been presented by Schwartz and also others with a missing term, leading to confusing and wrong results mathematically, and as a result electromagnetically; and the revised, correct, and complete distributional representations of the Laplace operator, the Poisson equation, and double layers, defined as the dipole layer and equidensity layer, are obtained and presented with detailed discussions and explanations including boundary conditions. By using the revised form of the Laplacian, Green's theorem is obtained explicitly with special emphases about important points and differences with previous works. The generalized forms of the Laplacian, Poisson's equation, charge densities, boundary conditions, and Greens theorem are also presented when there is a multi-layer on the surface of discontinuity.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofElectromagneticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBoundary conditionsen_US
dc.subjectCharge densitiesen_US
dc.subjectDiscontinuitiesen_US
dc.subjectElectromagnetismen_US
dc.subjectPoisson equationen_US
dc.subjectDouble layersen_US
dc.titleRevised distributional forms of the Laplacian and Poisson's equation, their implications, and all related generalizationsen_US
dc.typeArticleen_US
dc.authoridTR130575en_US
dc.institutionauthorKuştepeli, Alp-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume35en_US
dc.identifier.issue6en_US
dc.identifier.startpage371en_US
dc.identifier.endpage385en_US
dc.identifier.wosWOS:000359480700001en_US
dc.identifier.scopus2-s2.0-84937874424en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/02726343.2015.1053349-
dc.relation.doi10.1080/02726343.2015.1053349en_US
dc.coverage.doi10.1080/02726343.2015.1053349en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5664.pdfMakale179.01 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 16, 2024

Page view(s)

224
checked on Nov 18, 2024

Download(s)

296
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.