Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozkurt, Barış-
dc.contributor.authorKaraosmanoglu, M. Kemal-
dc.contributor.authorKaraçalı, Bilge-
dc.contributor.authorÜnal, Erdem-
dc.date.accessioned2017-05-31T06:24:08Z-
dc.date.available2017-05-31T06:24:08Z-
dc.date.issued2014-10-
dc.identifier.citationBozkurt, B., Karaosmanoğlu, M.K., Karaçalı, B., and Ünal, E. (2014). Usul and Makam driven automatic melodic segmentation for Turkish music. Journal of New Music Research, 43(4), 375-389. doi:10.1080/09298215.2014.924535en_US
dc.identifier.issn0929-8215-
dc.identifier.urihttps://doi.org/10.1080/09298215.2014.924535-
dc.identifier.urihttp://hdl.handle.net/11147/5651-
dc.description.abstractAutomatic melodic segmentation is a topic studied extensively, aiming at developing systems that perform grouping of musical events. Here, we consider the problem of automatic segmentation via supervised learning from a dataset containing segmentation labels of an expert. We present a statistical classification-based segmentation system developed specifically for Turkish makam music. The proposed system uses two novel features, a makam-based and an usul-based feature, together with features commonly used in literature. The makam-based feature is defined as the probability of a note to appear at the phrase boundary, computed from the distributions of boundaries with respect to the piece’s makam pitches. Likewise, the usul-based feature is computed from the distributions of boundaries with respect to beats in the rhythmic cycle, usul of the piece. Several experimental setups using different feature groups are designed to test the contribution of the proposed features on three datasets. The results show that the new features carry complementary information to existing features in the literature within the Turkish makam music segmentation context and that the inclusion of new features resulted in statistically significant performance improvement.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (112E162)en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofJournal of New Music Researchen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMakamen_US
dc.subjectUsulen_US
dc.subjectMelodic analysisen_US
dc.subjectMelodic groupingen_US
dc.subjectMelodic segmentationen_US
dc.titleUsul and Makam driven automatic melodic segmentation for Turkish musicen_US
dc.typeArticleen_US
dc.authoridTR11527en_US
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume43en_US
dc.identifier.issue4en_US
dc.identifier.startpage375en_US
dc.identifier.endpage389en_US
dc.identifier.wosWOS:000342325800002en_US
dc.identifier.scopus2-s2.0-84907883220en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/09298215.2014.924535-
dc.relation.doi10.1080/09298215.2014.924535en_US
dc.coverage.doi10.1080/09298215.2014.924535en_US
local.message.claim2022-06-06T11:07:02.781+0300|||rp01762|||submit_approve|||dc_contributor_author|||None*
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ1-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextWith Fulltext-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5651.pdfMakale532.21 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Jun 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Jun 22, 2024

Page view(s)

1,054
checked on Jun 24, 2024

Download(s)

1,466
checked on Jun 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.