Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5619
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, Canan Nurhan-
dc.contributor.authorDoğangün, Oktay-
dc.contributor.authorDemir, Durmuş Ali-
dc.date.accessioned2017-05-29T06:34:28Z-
dc.date.available2017-05-29T06:34:28Z-
dc.date.issued2012-08-
dc.identifier.citationKarahan, C. N., Doğangün, O. and Demir, D. A. (2012). Conformal transformations in metric-affine gravity and ghosts. Annalen der Physik, 524(8), 461-469. doi:10.1002/andp.201200003en_US
dc.identifier.issn0003-3804-
dc.identifier.urihttp://dx.doi.org/10.1002/andp.201200003-
dc.identifier.urihttp://hdl.handle.net/11147/5619-
dc.description.abstractConformal transformations play a widespread role in gravity theories in regard to their cosmological and other implications. In the pure metric theory of gravity, conformal transformations change the frame to a new one wherein one obtains a conformal-invariant scalar-tensor theory such that the scalar field, deriving from the conformal factor, is a ghost. In this work, conformal transformations and ghosts will be analyzed in the framework of the metric-affine theory of gravity. Within this framework, metric and connection are independent variables, and, hence, transform independently under conformal transformations. It will be shown that, if affine connection is invariant under conformal transformations, then the scalar field of concern is a non-ghost, non-dynamical field. It is an auxiliary field at the classical level, and might develop a kinetic term at the quantum level. Alternatively, if connection transforms additively with a structure similar to yet more general than that of the Levi-Civita connection, the resulting action describes the gravitational dynamics correctly, and, more importantly, the scalar field becomes a dynamical non-ghost field. The equations of motion, for generic geometrical and matter-sector variables, do not reduce connection to the Levi-Civita connection, and, hence, independence of connection from metric is maintained. Therefore, metric-affine gravity provides an arena in which ghosts arising from the conformal factor are avoided thanks to the independence of connection from the metric.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Inc.en_US
dc.relation.ispartofAnnalen der Physiken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMetric-affine gravityen_US
dc.subjectConformal mappingen_US
dc.subjectConformal transformationsen_US
dc.subjectGhostsen_US
dc.titleConformal transformations in metric-affine gravity and ghostsen_US
dc.typeArticleen_US
dc.authoridTR1918en_US
dc.institutionauthorKarahan, Canan Nurhan-
dc.institutionauthorDemir, Durmuş Ali-
dc.departmentİzmir Institute of Technology. Physicsen_US
dc.identifier.volume524en_US
dc.identifier.issue8en_US
dc.identifier.startpage461en_US
dc.identifier.endpage469en_US
dc.identifier.wosWOS:000307445500017en_US
dc.identifier.scopus2-s2.0-84865087188en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/andp.201200003-
dc.relation.doi10.1002/andp.201200003en_US
dc.coverage.doi10.1002/andp.201200003en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.05. Department of Pyhsics-
Appears in Collections:Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5619.pdfMakale Dosyası192.33 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 16, 2024

Page view(s)

334
checked on Nov 18, 2024

Download(s)

546
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.