Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5616
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPashaev, Oktay-
dc.contributor.authorNalcı, Şengül-
dc.date.accessioned2017-05-26T08:21:31Z-
dc.date.available2017-05-26T08:21:31Z-
dc.date.issued2012-09-
dc.identifier.citationPashaev, O., and Nalcı, Ş. (2012). Q-Shock soliton evolution. Chaos, Solitons and Fractals, 45(9-10), 1246-1254. doi:10.1016/j.chaos.2012.06.013en_US
dc.identifier.issn0960-0779-
dc.identifier.urihttp://doi.org/10.1016/j.chaos.2012.06.013-
dc.identifier.urihttp://hdl.handle.net/11147/5616-
dc.description.abstractBy generating function based on Jackson's q-exponential function and the standard exponential function, we introduce a new q-analogue of Hermite and Kampe-de Feriet polynomials. In contrast to q-Hermite polynomials with triple recurrence relations similar to [1], our polynomials satisfy multiple term recurrence relations, which are derived by the q-logarithmic function. It allows us to introduce the q-Heat equation with standard time evolution and the q-deformed space derivative. We find solution of this equation in terms of q-Kampe-de Feriet polynomials with arbitrary number of moving zeros, and solved the initial value problem in operator form. By q-analog of the Cole-Hopf transformation we obtain a new q-deformed Burgers type nonlinear equation with cubic nonlinearity. Regular everywhere, single and multiple q-shock soliton solutions and their time evolution are studied. A novel, self-similarity property of the q-shock solitons is found. Their evolution shows regular character free of any singularities. The results are extended to the linear time dependent q-Schrödinger equation and its nonlinear q-Madelung fluid type representation. © 2012 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipTUBITAK (110T679); Izmir Institute of Technologyen_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/TBAG/110T679en_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPolynomialsen_US
dc.subjectControl nonlinearitiesen_US
dc.subjectExponential functionsen_US
dc.subjectNonlinear equationsen_US
dc.subjectPartial differential equationsen_US
dc.subjectArbitrary numberen_US
dc.titleQ-Shock soliton evolutionen_US
dc.typeArticleen_US
dc.authoridTR57865en_US
dc.authoridTR57807en_US
dc.institutionauthorPashaev, Oktay-
dc.institutionauthorNalcı, Şengül-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume45en_US
dc.identifier.issue9-10en_US
dc.identifier.startpage1246en_US
dc.identifier.endpage1254en_US
dc.identifier.wosWOS:000309315800019en_US
dc.identifier.scopus2-s2.0-84864762371en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.chaos.2012.06.013-
dc.relation.doi10.1016/j.chaos.2012.06.013en_US
dc.coverage.doi10.1016/j.chaos.2012.06.013en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5616.pdfMakale1.05 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 16, 2024

Page view(s)

254
checked on Nov 18, 2024

Download(s)

1,492
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.