Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5597
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBıyıkoğlu, Türker-
dc.contributor.authorCivan, Yusuf-
dc.date.accessioned2017-05-24T11:16:20Z-
dc.date.available2017-05-24T11:16:20Z-
dc.date.issued2014-01-
dc.identifier.citationBıyıkoğlu, T., and Civan, Y. (2014). Vertex-decomposable graphs, codismantlability, cohen-macaulayness, and castelnuovo-mumford regularity. Electronic Journal of Combinatorics, 21(1).en_US
dc.identifier.issn1077-8926-
dc.identifier.urihttp://hdl.handle.net/11147/5597-
dc.description.abstractWe call a vertex x of a graph G = (V, E) a codominated vertex if NG[y] ⊆ NG[x] for some vertex y ∈ V \{x}, and a graph G is called codismantlable if either it is an edgeless graph or it contains a codominated vertex x such that G - x is codismantlable. We show that (C4, C5)-free vertex-decomposable graphs are codismantlable, and prove that if G is a (C4, C5, C7)-free well-covered graph, then vertex-decomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. These results complement and unify many of the earlier results on bipartite, chordal and very well-covered graphs. We also study the Castelnuovo-Mumford regularity reg(G) of such graphs, and show that reg(G) = im(G) whenever G is a (C4, C5)-free vertex-decomposable graph, where im(G) is the induced matching number of G. Furthermore, we prove that H must be a codismantlable graph if im(H) = reg(H) = m(H), where m(H) is the matching number of H. We further describe an operation on digraphs that creates a vertex-decomposable and codismantlable graph from any acyclic digraph. By way of application, we provide an infinite family Hn (n ≥ 4) of sequentially Cohen-Macaulay graphs whose vertex cover numbers are half of their orders, while containing no vertex of degree-one such that they are vertex-decomposable, and reg(Hn) = im(Hn) if n ≥ 6. This answers a recent question of Mahmoudi, et al [12].en_US
dc.language.isoenen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.relation.ispartofElectronic Journal of Combinatoricsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEdge ringsen_US
dc.subjectVertex decomposable graphsen_US
dc.subjectInduced matchingen_US
dc.subjectCodismantlabilityen_US
dc.subjectCochordal cover numberen_US
dc.titleVertex-decomposable graphs, codismantlability, cohen-macaulayness, and castelnuovo-mumford regularityen_US
dc.typeArticleen_US
dc.institutionauthorBıyıkoğlu, Türker-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84892605087en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5597.pdfMakale238.8 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Mar 29, 2024

Page view(s)

280
checked on May 20, 2024

Download(s)

160
checked on May 20, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.