Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5591
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorErdem, Tahir Kemal-
dc.contributor.authorKırca, Önder-
dc.date.accessioned2017-05-24T07:08:11Z-
dc.date.available2017-05-24T07:08:11Z-
dc.date.issued2014-11-01-
dc.identifier.citationTayfur, G., Erdem, T.K., and Kırca, Ö. (2014). Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks. Journal of Materials in Civil Engineering, 26(11). doi:10.1061/(ASCE)MT.1943-5533.0000985en_US
dc.identifier.issn0899-1561-
dc.identifier.issn1943-5533-
dc.identifier.urihttps://doi.org/10.1061/(ASCE)MT.1943-5533.0000985-
dc.identifier.urihttp://hdl.handle.net/11147/5591-
dc.description.abstractHigh-strength concretes (HSC) were prepared with five different binder contents, each of which had several silica fume (SF) ratios (0-15%). The compressive strength was determined at 3, 7, and 28 days, resulting in a total of 60 sets of data. In a fuzzy logic (FL) algorithm, three input variables (SF content, binder content, and age) and the output variable (compressive strength) were fuzzified using triangular membership functions. A total of 24 fuzzy rules were inferred from 60% of the data. Moreover, the FL model was tested against an artificial neural networks (ANNs) model. The results show that FL can successfully be applied to predict the compressive strength of HSC. Three input variables were sufficient to obtain accurate results. The operators used in constructing the FL model were found to be appropriate for compressive strength prediction. The performance of FL was comparable to that of ANN. The extrapolation capability of FL and ANNs were found to be satisfactory.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Civil Engineers (ASCE)en_US
dc.relation.ispartofJournal of Materials in Civil Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectCementen_US
dc.subjectCompressive strengthen_US
dc.subjectConcrete admixturesen_US
dc.subjectFuzzy setsen_US
dc.titleStrength prediction of high-strength concrete by fuzzy logic and artificial neural networksen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.authoridTR25839en_US
dc.institutionauthorTayfur, Gökmen-
dc.institutionauthorErdem, Tahir Kemal-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume26en_US
dc.identifier.issue11en_US
dc.identifier.wosWOS:000344012200003en_US
dc.identifier.scopus2-s2.0-84911882223en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1061/(ASCE)MT.1943-5533.0000985-
dc.relation.doi10.1061/(ASCE)MT.1943-5533.0000985en_US
dc.coverage.doi10.1061/(ASCE)MT.1943-5533.0000985en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5591.pdfMakale550.5 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

62
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

48
checked on Nov 9, 2024

Page view(s)

976
checked on Nov 18, 2024

Download(s)

1,104
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.