Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorDurgun, Yılmaz-
dc.date.accessioned2017-05-24T06:46:47Z
dc.date.available2017-05-24T06:46:47Z
dc.date.issued2014
dc.identifier.citationBüyükaşık, E., and Durğun, Y. (2014). Coneat submodules and coneat-flat modules. Journal of the Korean Mathematical Society, 51(6), 1305-1319. doi:10.4134/JKMS.2014.51.6.1305en_US
dc.identifier.issn0304-9914
dc.identifier.issn0304-9914-
dc.identifier.urihttps://doi.org/10.4134/JKMS.2014.51.6.1305
dc.identifier.urihttp://hdl.handle.net/11147/5589
dc.description.abstractA submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism N → S can be extended to a homomorphism M → S. M is called coneat-flat if the kernel of any epimorphism Y → M → 0 is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneatflat if and only if M+ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m- injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.en_US
dc.language.isoenen_US
dc.publisherKorean Mathematical Societyen_US
dc.relation.ispartofJournal of the Korean Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAbsolutely neat moduleen_US
dc.subjectCoclosed submoduleen_US
dc.subjectConeat submoduleen_US
dc.titleConeat submodules and coneat-flat modulesen_US
dc.typeArticleen_US
dc.authoridTR130906en_US
dc.institutionauthorBüyükaşık, Engİn-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume51en_US
dc.identifier.issue6en_US
dc.identifier.startpage1305en_US
dc.identifier.endpage1319en_US
dc.identifier.wosWOS:000344820400012en_US
dc.identifier.scopus2-s2.0-84908292544en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.4134/JKMS.2014.51.6.1305-
dc.relation.doi10.4134/JKMS.2014.51.6.1305en_US
dc.coverage.doi10.4134/JKMS.2014.51.6.1305en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5589.pdfMakale162.36 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 16, 2024

Page view(s)

902
checked on Nov 18, 2024

Download(s)

794
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.