Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5537
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Russell, Esra | - |
dc.date.accessioned | 2017-05-17T10:38:04Z | - |
dc.date.available | 2017-05-17T10:38:04Z | - |
dc.date.issued | 2014-03 | - |
dc.identifier.citation | Russell, E. (2014). Extended void merging tree algorithm for self-similar models. Monthly Notices of the Royal Astronomical Society, 438(2), 1630-1653. doi:10.1093/mnras/stt2309 | en_US |
dc.identifier.issn | 1365-2966 | - |
dc.identifier.issn | 0035-8711 | - |
dc.identifier.uri | https://doi.org/10.1093/mnras/stt2309 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5537 | - |
dc.description.abstract | In hierarchical evolution, voids exhibit two different behaviours related with their surroundings and environments, they can merge or collapse. These two different types of void processes can be described by the two-barrier excursion set formalism based on Brownian random walks. In this study, the analytical approximate description of the growing void merging algorithm is extended by taking into account the contributions of voids that are embedded into overdense region(s) which are destined to vanish due to gravitational collapse. Following this, to construct a realistic void merging model that consists of both collapse and merging processes, the twobarrier excursion set formalism of the void population is used. Assuming spherical voids in the Einstein-de Sitter Universe, the void merging algorithm which allows us to consider the two main processes of void hierarchy in one formalism is constructed. In addition to this, the merger rates, void survival probabilities, void size distributions in terms of the collapse barrier and finally, the void merging tree algorithm in the self-similar models are defined and derived. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Oxford University Press | en_US |
dc.relation.ispartof | Monthly Notices of the Royal Astronomical Society | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Large-scale structure of universe | en_US |
dc.subject | Cosmology | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Einstein-de Sitter Universe | en_US |
dc.title | Extended Void Merging Tree Algorithm for Self-Similar Models | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Russell, Esra | - |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 438 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 1630 | en_US |
dc.identifier.endpage | 1653 | en_US |
dc.identifier.wos | WOS:000330955900054 | - |
dc.identifier.scopus | 2-s2.0-84893403853 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1093/mnras/stt2309 | - |
dc.relation.doi | 10.1093/mnras/stt2309 | en_US |
dc.coverage.doi | 10.1093/mnras/stt2309 | - |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Sürdürülebilir Yeşil Kampüs Koleksiyonu / Sustainable Green Campus Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
3
checked on Mar 29, 2025
WEB OF SCIENCETM
Citations
3
checked on Mar 29, 2025
Page view(s)
200
checked on Mar 31, 2025
Download(s)
198
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.