Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5535
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTayfur, Gökmen-
dc.contributor.authorZucco, Graziano-
dc.contributor.authorBrocca, Luca-
dc.contributor.authorMoramarco, Tommaso-
dc.date.accessioned2017-05-17T08:34:05Z
dc.date.available2017-05-17T08:34:05Z
dc.date.issued2014-03
dc.identifier.citationTayfur, G., Zucco, G., Brocca, L., and Moramarco, T. (2014). Coupling soil moisture and precipitation observations for predicting hourly runoff at small catchment scale. Journal of Hydrology, 510, 363-371. doi:10.1016/j.jhydrol.2013.12.045en_US
dc.identifier.issn0022-1694
dc.identifier.issn0022-1694-
dc.identifier.urihttps://doi.org/10.1016/j.jhydrol.2013.12.045
dc.identifier.urihttp://hdl.handle.net/11147/5535
dc.description.abstractThe importance of soil moisture is recognized in rainfall-runoff processes. This study quantitatively investigates the use of soil moisture measured at 10, 20, and 40cm soil depths along with rainfall in predicting runoff. For this purpose, two small sub-catchments of Tiber River Basin, in Italy, were instrumented during periods of October 2002-March 2003 and January-April 2004. Colorso Basin is about 13km2 and Niccone basin 137km2. Rainfall plus soil moisture at 10, 20, and 40cm formed the input vector while the discharge was the target output in the model of generalized regression neural network (GRNN). The model for each basin was calibrated and tested using October 2002-March 2003 data. The calibrated and tested GRNN was then employed to predict runoff for each basin for the period of January-April 2004. The model performance was found to be satisfactory with determination coefficient, R2, equal to 0.87 and Nash-Sutcliffe efficiency, NS, equal to 0.86 in the validation phase for both catchments. The investigation of effects of soil moisture on runoff prediction revealed that the addition of soil moisture data, along with rainfall, tremendously improves the performance of the model. The sensitivity analysis indicated that the use of soil moisture data at different depths allows to preserve the memory of the system thus having a similar effect of employing the past values of rainfall, but with improved GRNN performance.en_US
dc.description.sponsorshipCNR-IRPI Office in Perugia, Italyen_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofJournal of Hydrologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExperimental basinsen_US
dc.subjectGRNNen_US
dc.subjectPredictionen_US
dc.subjectRainfallen_US
dc.subjectSoil moistureen_US
dc.titleCoupling soil moisture and precipitation observations for predicting hourly runoff at small catchment scaleen_US
dc.typeArticleen_US
dc.authoridTR2054en_US
dc.institutionauthorTayfur, Gökmen-
dc.departmentİzmir Institute of Technology. Civil Engineeringen_US
dc.identifier.volume510en_US
dc.identifier.startpage363en_US
dc.identifier.endpage371en_US
dc.identifier.wosWOS:000333138800029en_US
dc.identifier.scopus2-s2.0-84892851745en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.jhydrol.2013.12.045-
dc.relation.doi10.1016/j.jhydrol.2013.12.045en_US
dc.coverage.doi10.1016/j.jhydrol.2013.12.045en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.03. Department of Civil Engineering-
Appears in Collections:Civil Engineering / İnşaat Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5535.pdfMakale2.85 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

36
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 16, 2024

Page view(s)

8,706
checked on Nov 18, 2024

Download(s)

656
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.